Electrochemical (co)deposition of lanthanum and cobalt from trimethyl phosphate-based solutions
https://doi.org/10.31615/j.corros.prot.2023.110.4-5
Abstract
Understanding the process of lanthanide (co)deposition is an important step towards the possibility of their efficient recycling and the electrochemical formation of lanthanide-based materials. Growing interest in organic ionic systems such as ionic liquids is due to their excellent physicochemical properties, particularly nonvolatility, thermal and electrochemical stability. In addition, organic ionic systems can be used for the extraction of lanthanides. Thus, the combined process of extraction and electrodeposition has good prospects to practical purposes. In this work, we investigated the electrochemical (co)deposition of lanthanum and cobalt from trimethyl phosphate (TMP)-based solutions. It was shown that during cathodic polarization of a Pt electrode in a solution of Co(II) in TMP, a granular deposit of Co is formed, while no deposition of La was observed in a solution of La(III) in TMP. Nevertheless, voltammetric, microscopic, and elemental analysis data indicate that electrochemical codeposition of Co and La occurs in a solution containing both La(III) and Co(II). It is concluded that the presence of Co(II) in TMP induces the electroreduction of La(III) ions.
About the Authors
O. I. ZaytsevRussian Federation
Oleg I. Zaytsev, senior laboratory assistant,
bld. 4, 31, Leninskiy pr., Moscow, 119071.
A. V. Cherepakha
Russian Federation
Anna V. Cherepakha, student,
9, Miusskaya square, Moscow, 125047.
M. R. Ehrenburg
Russian Federation
Maria R. Ehrenburg, PhD in Chemistry, leading researcher,
bld. 4, 31, Leninskiy pr., Moscow, 119071.
V. L. Filippov
Russian Federation
Vadim L. Filippov, postgraduate student, junior researcher,
bld. 4, 31, Leninskiy pr., Moscow, 119071.
A. V. Rudnev
Russian Federation
Alexander V. Rudnev, PhD in Chemistry, leading researcher,
bld. 4, 31, Leninskiy pr., Moscow, 119071.
References
1. Rudnev A. V. Electrodeposition of lanthanides from ionic liquids and deep eutectic solvents // Russian Chemical Reviews. ‒ 2020. ‒ V. 89, № 12. ‒ P. 1463-1482.
2. Sebastián P., Climent V., Feliu J. M., Gómez E. Ionic Liquids in the Field of Metal Electrodeposition // Encyclopedia of Interfacial Chemistry: Surface Science and Electrochemistry / Wandelt K.Elsevier, 2018. ‒ P. 690-700.
3. El-Nadi Y. A. Effect of diluents on the extraction of praseodymium and samarium by Cyanex 923 from acidic nitrate medium // Journal of Rare Earths. ‒ 2010. ‒ V. 28, № 2. ‒ P. 215-220.
4. Lee M.-S., Lee J.-Y., Kim J.-S., Lee G.-S. Solvent extraction of neodymium ions from hydrochloric acid solution using PC88A and saponified PC88A // Separation and Purification Technology. ‒ 2005. ‒ V. 46, № 1. ‒ P. 72-78.
5. Yoon S. J., Lee J. G., Tajima H., Yamasaki A., Kiyono F., Nakazato T., Tao H. Extraction of lanthanide ions from aqueous solution by bis(2-ethylhexyl)phosphoric acid with roomtemperature ionic liquids // Journal of Industrial and Engineering Chemistry. ‒ 2010. ‒ V. 16, № 3. ‒ P. 350-354.
6. Rout A., Venkatesan K. A., Srinivasan T. G., Vasudeva Rao P. R. Extraction and third phase formation behavior of Eu(III) IN CMPO–TBP extractants present in room temperature ionic liquid // Separation and Purification Technology. ‒ 2011. ‒ V. 76, № 3. ‒ P. 238-243.
7. Bagri P., Luo H., Popovs I., Thapaliya B. P., Dehaudt J., Dai S. Trimethyl phosphate based neutral ligand room temperature ionic liquids for electrodeposition of rare earth elements // Electrochemistry Communications. ‒ 2018. ‒ V. 96. ‒ P. 88-92.
8. Matsumiya M., Kikuchi Y., Yamada T., Kawakami S. Extraction of rare earth ions by tri-n-butylphosphate/phosphonium ionic liquids and the feasibility of recovery by direct electrodeposition // Separation and Purification Technology. ‒ 2014. ‒ V. 130. ‒ P. 91-101.
9. Krishna G. M., Rout A., Venkatesan K. A. Voltammetric investigation of some lanthanides in neutral ligand-ionic liquid // Journal of Electroanalytical Chemistry. ‒ 2020. ‒ V. 856. ‒ P. 113671.
10. Xu X., Sturm S., Zavasnik J., Rozman K. Z. Electrodeposition of a Rare-Earth Iron Alloy from an Ionic-Liquid Electrolyte // ChemElectroChem. ‒ 2019. ‒ V. 6, № 11. ‒ P. 2860-2869.
11. Molodkina E. B., Ehrenburg M. R., Arkhipushkin I. A., Rudnev A. V. Interfacial effects in the electro(co)deposition of Nd, Fe, and Nd-Fe from an ionic liquid with controlled amount of water // Electrochimica Acta. ‒ 2021. ‒ V. 398. ‒ P. 139342.
12. Molodkina E. B., Ehrenburg M. R., Rudnev A. V. Electrochemical Codeposition of Sm and Co in a Dicyanamide Ionic Liquid // Russian Journal of Electrochemistry. ‒ 2022. ‒ V. 58, № 12. ‒ P. 1083-1093.
13. Clavilier J. Flame-annealing and cleaning technique in: A. Wieckowski (Ed.) Interfacial Electrochemistry: Theory, Experimental, and Applications // New York: CRC Press. ‒ 1999. ‒ P. 231-248.
14. Horcas I., Fernandez R., Gomez-Rodriguez J. M., Colchero J., Gomez-Herrero J., Baro A. M. WSXM: A software for scanning probe microscopy and a tool for nanotechnology // Review of Scientific Instruments. ‒ 2007. ‒ V. 78, № 1. ‒ P. 013705-8.
15. Kantacha A. N., Wonganawa S. Reaction of Co(II) and tri n-butyl phosphate // Inorganica Chimica Acta. ‒ 1987. ‒ V. 134, № 1. ‒ P. 135-137.
Review
For citations:
Zaytsev O.I., Cherepakha A.V., Ehrenburg M.R., Filippov V.L., Rudnev A.V. Electrochemical (co)deposition of lanthanum and cobalt from trimethyl phosphate-based solutions. Theory and Practice of Corrosion Protection. 2023;28(4):40-48. (In Russ.) https://doi.org/10.31615/j.corros.prot.2023.110.4-5