

Об определяющей роли биопленок микроорганизмов в инициировании и развитии микробиологической коррозии металлов (часть 1)
https://doi.org/10.31615/j.corros.prot.2022.106.4-6
Аннотация
Надежность технических изделий определяется их стойкостью к воздействию внешней среды, естественной составляющей которой являются микроорганизмы-деструкторы (бактерии, дрожжи, микроскопические грибы и др.).
Низкая эффективность защиты металлов от биокоррозии во многом связана с недостаточной изученностью всех аспектов повреждающего воздействия микроорганизмов. Отсутствуют количественные данные о процессах биоповреждения элементов техники в реальных условиях эксплуатации. К настоящему времени не разработаны достоверные методы диагностики и прогнозирования долговечности металлов и их конструкций в условиях взаимодействия с объектами живой природы.
В данной работе сделана попытка объяснить роль биопленок микроскопических грибов, как важного фактора микологической коррозии металлов. Образование и накопление коррозионно-активной среды возможно в результате процессов метаболизма микроскопических грибов, формирующих биопленку. Детальное установление механизма биокоррозии металлов представляет собой комплексную научную задачу.
Целью статьи является анализ экспериментальных данных по изучению аэробной биокоррозии металлов, опосредованной метаболической активностью биопленок бактерий и микроскопических грибов
Об авторах
Д. В. БеловРоссия
Белов Денис Владимирович, к.х.н., доцент, старший научный сотрудник
Нижний Новгород, ул. Ульянова, д. 46
С. Н. Беляев
Россия
Беляев Сергей Николаевич, к.х.н., научный сотрудник
Нижний Новгород, ул. Ульянова, д. 46
Список литературы
1. https://www.popularmechanics.com/military/research/news/a22960/air-force-planeeating-bacteria/
2. Kakooei S., Ismail M.C., Ariwahjoedi B. Mechanisms of microbiologically influenced corrosion: A Review // World Applied Sciences Journal. – 2012. – V. 17, № 4. – P. 524-531.
3. Little B. J., Lee J. S. Microbiologically influenced corrosion: an update // International Materials Reviews. – 2014. – V. 59, № 7. – P. 384-393. doi: 10.1179/1743280414y.000000003
4. Nelson V.V., Maria O.T., Mamiè S.V., Maritza P.C. Microbiologically Influenced Corrosion in Aluminium Alloys 7075 and 2024 / Aluminium Alloys ‒ Recent Trends in Processing, Characterization, Mechanical Behavior and Applications. Chapter 12. – 2017. – P. 226-242. doi: 10.5772/intechopen.70735
5. Telegdi J., Shaban A., Trif L. Review on the microbiologically influenced corrosion and the function of biofilms // International Journal of Corrosion and Scale Inhibition. – 2020. – V. 9, № 1. – P. 1-33. doi: 10.17675/2305-6894-2020-9-1-1
6. Khan M A. A., Hussain M., Djavanroodi F. Microbiologically influenced corrosion in oil and gas industries: A review // International Journal of Corrosion and Scale Inhibition. – 2021. – V. 10, № 1. – P. 80-106. doi: 10.17675/2305-6894-2021-10-1-5
7. Okorie I.E., Chukwudi N.R. A review of fungal influenced corrosion of metals // Zastita Materijala. – 2021. – V. 62, № 4. – P. 333-339. doi: 10.5937/zasmat2104333O
8. Beech I.B., Sunner J. Biocorrosion: towards understanding interaction biofilms and metals // Current Opinion in Biotechnology. – 2004. – V. 15, № 3. – P. 181-186. doi: 10.1016/j.copbio.2004.05.001
9. Costerton J.W., Geesey G.G., Cheng K-J. How bacteria stick // Scientific American. 1978. – V. 238, № 1. – Р. 86-95. doi: 10.1038/scientificamerican0178-86.
10. Miller M.B., Bassler B.L. Quorum Sensing in Bacteria // Annual Review of Microbiology. – 2001. – V. 55, № 1. – P. 165-199. doi: 10.1146/annurev.micro.55.1.16
11. Andrews J.S., Rolfe S.A., Huang W.E., Scholes J.D., Banwart S.A. Biofilm formation in environmental bacteria is influenced by different macromolecules depending on genus and species // Environmental Microbiology. – 2010. – V. 12, № 9. – Р. 2496-2507. doi: 10.1111/j.1462-2920.2010.02223.x
12. Harding M.W., Marques L., Howard R.J., Olson M.E. Can filamentous fungi form biofilms? // Trends in Microbiology. – 2009 – V. 17, № 11. – Р. 475-480. doi: 10.1016/j.tim.2009.08.007
13. Oshiro K.G.N., Rodrigues G., Monges B.E.D., Cardoso M.H., Franco O.L. Bioactive Peptides Against Fungal Biofilms // Frontiers in Microbiology. – 2019. – V. 10. Article number 2169. doi: 10.3389/fmicb.2019.02169
14. Booth S.C., Workentine M.L., Wen J., Shaykhutdinov R., Vogel H.J., Ceri H., Weljie A.M. Differences in Metabolism between the Biofilm and Planktonic Response to Metal Stress // Journal of Proteome Research. – 2011. – V. 10, № 7. – P. 3190-3199. doi: 10.1021/pr2002353
15. Donlan R.M. Biofilms: Microbial Life on Surfaces // Emerging Infectious Diseases. – 2002. – V. 8, № 9. – P. 881-890. doi: 10.3201/eid0809.020063
16. Корякова М.Д., Чеботкевич Е.Г., Каплин Ю.М. О влиянии биологического фактора на коррозию металлов в морской воде. // Защита металлов. – 1990. – Т. 26, № 4. – С. 652-656.
17. Жиглецова С.К., Родин В.Б., Кобелев B.C., Александрова Н.В., Расулова Г.Е., Холоденко В.П. Исследование начальных этапов биокоррозии стали // Прикладная биохимия и микробиология. – 2000. – Т. 36, № 6. – С. 637-641.
18. Коровин Ю.М., Леденев А.В., Лукашев Ю.Ф., Чжу В.П. Коррозионная стойкость и микрообрастание металлов в Центральной Атлантике // Защита металлов. – 1991. –Т. 27, № 1. – С. 92-101.
19. Борщевский A.M., Великанов Т.Д., Павловец Н.М. Влияние железоокисляющих бактерий на коррозию углеродистой стали в водопроводной воде г. Санкт-Петербурга // Защита металлов. – 1994. – Т. 30, № 4. – С. 364-368.
20. Arampatzi S., Giannoglou G.D., Diza E. Biofilm formation: A complicated microbiological process // Aristotle University Medical Journal. – 2011. – V. 38, № 2. – P. 21-29.
21. Stoodley P., Sauer K., Davies D. G., Costerton J.W. Biofilms as Complex Differentiated Communities // Annual Review of Microbiology. – 2002. – V. 56, № 1. – P. 187-209. doi: 10.1146/annurev.micro.56.012302.160705
22. Lewandowski Z. Structure and function of biofilms. In: Evans LV, editor. Biofilms: recent advances in their study and control. Amsterdam: Harwood Academic Publishers. – 2000. – P. 1-17.
23. Zhang Y., Lin Y., Lv X., Xu A., Feng C., Lin J. Low-Field Nuclear Magnetic Resonance Characteristics of Biofilm Development Process // Microorganisms. – 2021. – V. 9. Article number 2466. doi: 10.3390/microorganisms9122466
24. Ozer E., Yaniv K., Chetrit E., Boyarski A., Meijler M.M., Berkovich R., Kushmaro A., Alfonta L. An inside look at a biofilm: Pseudomonas aeruginosa flagella biotracking // Science advances. – 2021. – V. 7, № 24. Article number eabg8581. doi: 10.1126/sciadv.abg8581
25. Konduri R., Saiabhilash C.R., Shivaji S. Biofilm-Forming Potential of Ocular Fluid Staphylococcus aureus and Staphylococcus epidermidis on Ex Vivo Human Corneas from Attachment to Dispersal Phase // Microorganisms. – 2021. – V. 9, № 6. Article number 1124. doi: 10.3390/microorganisms9061124
26. Guzmán-Soto I., McTiernan C., Gonzalez-Gomez M., Ross A., Gupta K., Suuronen E.J., Alarcon E.I. Mimicking biofilm formation and development: Recent progress in in vitro and in vivo biofilm models // iScience. – 2021. – V. 24, № 5. Article number 102443. doi: 10.1016/j.isci.2021.102443
27. Siddam A.D., Zaslow S.J., Wang Y., Phillips K.S., Silverman M.D., Regan P.M., Amarasinghe J.J. Characterization of Biofilm Formation by Mycobacterium chimaera on Medical Device Materials // Frontiers in Microbiology. – 2021. Article number 586657. doi: 10.3389/fmicb.2020.586657
28. More T.T., Yadav J.S., Yan S., Tyagi R.D., Surampalli R.Y. Extracellular polymeric substances of bacteria and their potential environmental applications // Journal of Environmental Management. – 2014. – V. 144. – P. 1-25. doi: 10.1016/j.jenvman.2014.05.010.
29. Sreeremya S.A Review on Microbial Biofilm // International Journal of Advance Research and Development. – 2017. – V. 2, № 2. – P. 7-10.
30. Lehner A., Riedel K., Eberl L., Breeuwer P., Diep B., Stephan R. Biofilm Formation, Extracellular Polysaccharide Production, and Cell-to-Cell Signaling in Various Enterobacter sakazakii Strains: Aspects Promoting Environmental Persistence // Journal of Food Protection. – 2005. – V. 68, № 11. – P. 2287- 2294. doi: 10.4315/0362-028x-68.11.2287
31. Denkhaus E., Meisen S., Telgheder U., Wingender J. Chemical and physical methods for characterisation of biofilms // Microchimica Acta. – 2006. – V. 158, № 1-2. – P. 1-27. doi: 10.1007/s00604-006-0688-5
32. Characklis W.G., McFeters G.A., Marshall K.C. Physiological ecology in biofilm systems. In: Characklis W.G., Marshall K.C. Biofilms. / New York: John Wiley & Sons; – 1990. – P. 341-394.
33. Fletcher M., Loeb G.I. Influence of substratum characteristics on the attachment of a marine pseudomonad to solid surfaces // Applied and Environmental Microbiology. – 1979. – V. 37, № 1. – P. 67-72. doi: 10.1128/aem.37.1.67-72.1979
34. Pringle J.H., Fletcher M. Influence of substratum wettability on attachment of freshwater bacteria to solid surfaces // Applied and Environmental Microbiology. – 1983. – V. 45, № 3. – P. 811‒817. doi: 10.1128/aem.45.3.811-817.1983
35. Bendinger B., Rijnaarts H. H., Altendorf K., Zehnder A.J. Physicochemical cell surface and adhesive properties of coryneform bacteria related to the presence and chain length of mycolic acids // Applied and Environmental Microbiology. – 1993. – V. 59, № 11. – P. 3973-3977. doi: 10.1128/aem.59.11.3973-3977.1993
36. Rosenberg M., Bayer E.A., Delarea J., Rosenberg E. Role of Thin Fimbriae in Adherence and Growth of Acinetobacter calcoaceticus RAG-1 on Hexadecane // Applied and Environmental Microbiology. – 1982. – V. 44, № 4. – P. 929-937. doi: 10.1128/aem.44.4.929-937.1982
37. Cowan M.M., Warren T.M., Fletcher M. Mixed-species colonization of solid surfaces in laboratory biofilms // Biofouling. – 1991. – V. 3. – P. 23-34. doi: 10.1080/08927019109378159
38. Bullitt E., Makowski L. Structural polymorphism of bacterial adhesion pili // Nature. – 1995. – V. 373, № 6510. – P. 164- 167. doi: 10.1038/373164a0
39. Bendinger B., Rijnaarts H.H., Altendorf K., Zehnder A.J. Physicochemical cell surface and adhesive properties of coryneform bacteria related to the presence and chain length of mycolic acids // Applied and Environmental Microbiology. – 1993. – V. 59, № 11. – P. 3973- 3977. doi: 10.1128/aem.59.11.3973-3977.1993
40. Mansfeld F. The interaction of bacteria and metal surfaces // Electrochimica Acta. – 2007. – V. 52, № 27. – P. 7670-7680. doi: 10.1016/j.electacta.2007.05.006
41. Nwodo U., Ezeikel G., Okoh A. Bacterial exopolysaccharides: functionality and prospects // International journal of molecular sciences. – 2012. – V. 13, № 11. – P. 14002- 14015. doi: 10.3390/ijms131114002
42. Beech I.B., Gaylarde C.C. Adhesion of Desulfovibrio desulfuricans and Pseudomonas fluorescens to mild steel surfaces // Journal of Applied Bacteriology. – 1989. – V. 67, № 2. – P. 201-207. doi: 10.1111/j.1365-2672.1989.tb03396.x
43. Beech I.B., Gaylarde C.C., Smith J.J., Geesey G.G. Extracellular polysaccharides from Desulfovibrio desulfuricans and Pseudomonas fluorescens in the presence of mild and stainless steel // Applied Microbiology and Biotechnology. – 1991. – V. 35, № 1. – P. 65-71. doi: 10.1007/BF00180638
44. Zottola E.A. Characterization of the attachment matrix of Pseudomonas fragi attached to nonporous surfaces // Biofouling. – 1991. – V. 5, № 1-2. – P. 37-55. doi: 10.1080/08927019109378227
45. Zhang H., Tian Y., Wan J., Zhao P. Study of Biofilm Influenced Corrosion on Cast Iron Pipes in Reclaimed Water // Applied Surface Science. – 2015. – V. 357. – P. 236-247. doi: 10.1016/j.apsusc.2015.09.021
46. Geweely N.S.I. Evaluation of ozone for preventing fungal influenced corrosion of reinforced concrete bridges over the River Nile, Egypt // Biodegradation. – 2010. – V. 22, № 2. – P. 243-252. doi: 10.1007/s10532-010-9391-7
47. Song-Mei L., Yuan-Yuan Z., Ru-Bing B., Jian-Hua L. Mei Y. Corrosion Behavior of Steel A3 under the Combined Effect of Streptomyces and Nocardia sp. // Acta Physico-Chimica Sinica. – 2009. – V. 25, № 5. – P. 921-927. doi: 10.3866/PKU.WHXB20090518
48. Tran T.T.T., Kannoorpatti K., Padovan A., Thennadil S.N. A study of bacteria adhesion and microbial corrosion on different stainless steels in environment containing Desulfovibrio vulgaris // Royal Society Open Science. – 2021. – V. 8, № 1. Article number 201577. doi: 10.1098/rsos.201577
49. Donlan R.M. Biofilm elimination on intravascular catheters: important considerations for the infectious disease practitioner // Clinical infectious diseases : an official publication of the Infectious Diseases Society of America. – 2011. – V. 52, № 8. – P. 1038-1045. doi: 10.1093/cid/cir077
50. Popat R., Crusz S.A., Messina M., Williams P., West S.A., Diggle S.P. Quorumsensing and cheating in bacterial biofilms // Proceedings. Biological sciences. – 2012. – V. 279, № 1748. – Р. 4765-4771. doi: 10.1098/rspb.2012.1976
51. Zhang T., Fang H.H.P., Ko B.C.B. Methanogen population in a marine biofilm corrosive to mild steel // Applied Microbiology and Biotechnology. – 2003. – V. 63, № 1. – P. 101-106. doi: 10.1007/s00253-003-1396-2
52. Dinh H.T., Kuever J., Mubmann M., Hassel A.W., Stratmann M., Widdel, F. Iron corrosion by novel anaerobic microorganisms // Nature. – 2004. – V. 427, № 6977. – P. 829- 832. doi: 10.1038/nature02321
53. Acuña N., Ortega-Morales B.O., Valadez- González A. Biofilm Colonization Dynamics and Its Influence on the Corrosion Resistance of Austenitic UNS S31603 Stainless Steel Exposed to Gulf of Mexico Seawater // Marine Biotechnology. – 2006. – V. 8, № 1. – P. 62-70. doi: 10.1007/s10126-005-5145-7
54. Miranda E., Bethencourt M., Botana F. J., Cano M.J., Sánchez-Amaya J.M., Corzo A., Ollivier B. Biocorrosion of carbon steel alloys by an hydrogenotrophic sulfate-reducing bacterium Desulfovibrio capillatus isolated from a Mexican oil field separator // Corrosion Science. – 2006. – V. 48, № 9. – P. 2417-2431. doi: 10.1016/j.corsci.2005.09.005
55. Lopes F.A., Morin P., Oliveira R., Melo L.F. Interaction of Desulfovibrio desulfuricans biofilms with stainless steel surface and its impact on bacterial metabolism // Journal of Applied Microbiology. – 2006. – V. 101, № 5. – P. 1087-1095. doi: 10.1111/j.1365-2672.2006.03001.x
56. Çetin D., Bilgiç S., Dönmez G. Biocorrosion of Low Alloy Steel by Desulfotomaculum sp. and Effect of Biocides on Corrosion Control // ISIJ International. – 2007. – V. 47, № 7. – P. 1023- 1028. doi: 10.2355/isijinternational.47.1023
57. Ilhan-Sungur E., Cansever N., Cotuk A. Microbial corrosion of galvanized steel by a freshwater strain of sulphate reducing bacteria (Desulfovibrio sp.) // Corrosion Science. – 2007. – V. 49, № 3. – P. 1097-1109. doi: 10.1016/j.corsci.2006.05.050
58. Duan J., Wu S., Zhang X., Huang G., Du M., Hou B. Corrosion of carbon steel influenced by anaerobic biofilm in natural seawater // Electrochimica Acta. – 2008. – V. 54, № 1. – P. 22-28. doi: 10.1016/j.electacta.2008.04.085
59. Cetin D., Aksu M.L. Corrosion behavior of low-alloy steel in the presence of Desulfotomaculum sp. // Corrosion Science. – 2009. – V. 51, № 8. – P. 1584-1588. doi: 10.1016/j.corsci.2009.04.001
60. Païssé S., Ghiglione J.-F., Marty F., Abbas B., Gueuné H., Amaya J.M.S., Quillet L. Sulfate-reducing bacteria inhabiting natural corrosion deposits from marine steel structures // Applied Microbiology and Biotechnology.– 2012. – V. 97, № 16. – P. 7493-7504. doi: 10.1007/s00253-012-4464-7
61. Wikieł A.J., Datsenko I., Vera M., Sand W. Impact of Desulfovibrio alaskensis biofilms on corrosion behaviour of carbon steel in marine environment // Bioelectrochemistry. – 2014. – V. 9, № 7. – P. 52-60. doi: 10.1016/j.bioelechem.2013.09.008
62. Zhang P., Xu D., Li Y., Yang K., Gu T. Electron mediators accelerate the microbiologically influenced corrosion of 304 stainless steel by the Desulfovibrio vulgaris biofilm // Bioelectrochemistry. – 2015. – V. 101. – P. 14-21. doi: 10.1016/j.bioelechem.2014.06.010
63. McBeth J.M., Emerson D. In Situ Microbial Community Succession on Mild Steel in Estuarine and Marine Environments: Exploring the Role of Iron-Oxidizing Bacteria // Frontiers in Microbiology. – 2016. – V. 7. Article number 767. doi: 10.3389/fmicb.2016.00767
64. Zhang Y., Pei G., Chen L., Zhang W. Metabolic dynamics of Desulfovibrio vulgaris biofilm grown on a steel surface // Biofouling (Journal of Bioadhesion and Biofilm Research). – 2016. – V. 32, № 7. – P. 725-736. doi: 10.1080/08927014.2016.1193166
65. Li X., Duan J., Xiao H., Li Y., Liu H., Guan F., Zhai X. Analysis of Bacterial Community Composition of Corroded Steel Immersed in Sanya and Xiamen Seawaters in China via Method of Illumina MiSeq Sequencing. // Frontiers in Microbiology. – 2017. – V. 8. Article number 1737. doi: 10.3389/fmicb.2017.01737
66. Beech I.B., Sunner J. Biocorrosion: towards understanding interactions between biofilms and metals // Current Opinion in Biotechnology. – 2004. – V. 15, № 3. – P. 181- 186. doi: 10.1016/j.copbio.2004.05.001
67. Rufino B.N., Procópio L. Influence of Salt Water Flow on Structures and Diversity of Biofilms Grown on 316L Stainless Steel // Current Microbiology. – 2021. – V. 78, № 9. – P. 3394-3402. doi: 10.1007/s00284-021-02596-5
68. Neria-González I., Wang E.T., Ramírez F., Romero J.M., Hernández- Rodríguez C. Characterization of bacterial community associated to biofilms of corroded oil pipelines from the southeast of Mexico // Anaerobe. – 2006. – V. 12, № 3. – P. 122-133. doi: 10.1016/j.anaerobe.2006.02.001
69. Lee J.-W., Nam J.-H., Kim Y.-H., Lee K.- H., Lee D.-H. Bacterial communities in the initial stage of marine biofilm formation on artificial surfaces // The Journal of Microbiology. – 2008. – V. 46, № 2. – P. 174-182. doi: 10.1007/s12275-008-0032-3
70. Kip N., van Veen J.A. The dual role of microbes in corrosion // The ISME Journal. – 2014. – V. 9, № 3. – P. 542-551. doi: 10.1038/ismej.2014.169
71. Dang H., Lovell C.R. Microbial Surface Colonization and Biofilm Development in Marine Environments // Microbiology and Molecular Biology Reviews. – 2015. – V. 80, № 1. – P. 91-138. doi: 10.1128/mmbr.00037-15
72. Tadros H.R.Z., Naggar M.F.E., Barakat K.M.I., Abou-Taleb A.E.A., Zaghloul F.A.E.R. Impact of Some Physicochemical and Biological Factors on Steel Corro-sion in Seawater // Asian journal of advanced basic sciences. – 2015. – V. 3, № 2. – P. 64-73
73. Faimali M., Chelossi E., Pavanello G., Benedetti A., Vandecandelaere I., De Vos P., Mollica A. Electrochemical activity and bacterial diversity of natural marine biofilm in laboratory closed-systems // Bioelectrochemistry. – 2010. – V. 78, № 1. – P. 30-38. doi: 10.1016/j.bioelechem.2009.04.012
74. Machuca L.L., Bailey S.I., Gubner R., Watkin E.L.J., Ginige M.P., Kaksonen A.H., Heidersbach K. Effect of oxygen and biofilms on crevice corrosion of UNS S31803 and UNS N08825 in natural seawater // Corrosion Science. – 2013. – V. 67. – P. 242-255. doi: 10.1016/j.corsci.2012.10.023
75. Харченко У.В. Влияние аэробных морских бактерий на катодное поведение некоторых сплавов в морской воде // Коррозия: материалы, защита. – 2005. – № 5. – С. 46-48.
76. Корякова М.Д., Никитин В.М., Супонина А.П., Звягинцев А.Ю., Харченко У.В. Обрастание и биокоррозия высоколегированной стали в бухте Золотой Рог // Защита металлов. – 2002. – Т. 38, № 5. – С. 544-548.
77. Little B.J., Lee J.S. Microbiologically Influenced Corrosion. 2007. 1-st edn. Hoboken, John Wiley and Sons, New Jersey. doi: 10.1002/9781119019213.ch27
78. Usher K.M., Kaksonen A.H., Cole I., Marney D. Critical review: Microbially influenced corrosion of buried carbon steel pipes // International Biodeterioration & Biodegradation. – 2014. – V. 93. – P. 84-106. doi: 10.1016/j.ibiod.2014.05.007
79. Kato S. Microbial extracellular electron transfer and its relevance to iron corrosion // Microbial Biotechnology. – 2016. – V. 9, № 2. – P. 141-148. doi: 10.1111/1751-7915.12340
Рецензия
Для цитирования:
Белов Д.В., Беляев С.Н. Об определяющей роли биопленок микроорганизмов в инициировании и развитии микробиологической коррозии металлов (часть 1). Практика противокоррозионной защиты. 2022;27(4):52-66. https://doi.org/10.31615/j.corros.prot.2022.106.4-6
For citation:
Belov D.V., Belyaev S.N. On the decisive role of biofilms of microorganisms in the initiation and development of microbiological corrosion of metals (part 1). Theory and Practice of Corrosion Protection. 2022;27(4):52-66. (In Russ.) https://doi.org/10.31615/j.corros.prot.2022.106.4-6