Preview

Theory and Practice of Corrosion Protection

Advanced search
Open Access Open Access  Restricted Access Subscription Access

On the Technology of Increasing the Efficiency and Reliability of Boilers Burning Biowaste in a Fluidized Bed of Inert Material

https://doi.org/10.31615/j.corros.prot.2024.113.3-3

Abstract

The use of biomass (biowaste) as a renewable energy source is of great interest from the point of view of ecology and environmental protection. However, when burning biomass in fluidized bed furnaces, a number of problems are observed: corrosion of convective heating surfaces of boilers, agglomeration of particles of inert material and biomass ash, defluidization, etc.

The article considers the characteristic problems of burning various plant wastes and, in particular, sunflower husks, since this type of biowaste is very common in Russia.

The ways of solving problems that reduce the risk of corrosion damage to boiler heating surfaces, improve the fuel and operational characteristics of biomass are determined. These include preliminary washing of biomass with hot water, torrefaction, rational selection of fluidized bed materials, and a number of others.

 

 

About the Authors

O. Yu. Milovanov
National Research University «Moscow Power Engineering Institute»
Russian Federation

Oleg Yu. Milovanov, Ph.D. in Technical Sciences, senior researcher

bld. 1, 14, Krasnokazarmennaya st., Moscow, 111250



D. V. Klimov
National Research University «Moscow Power Engineering Institute»
Russian Federation

Dmitry V. Klimov, Ph.D. in Technical Sciences, senior researcher

bld. 1, 14, Krasnokazarmennaya st., Moscow, 111250



S. N. Kuzmin
National Research University «Moscow Power Engineering Institute»
Russian Federation

Sergey N. Kuzmin, Ph.D. in Technical Sciences, senior researcher

bld. 1, 14, Krasnokazarmennaya st., Moscow, 111250



S. V. Grigoriev
National Research University «Moscow Power Engineering Institute»
Russian Federation

Sergey V. Grigor’ev, Ph.D. in Technical Sciences, leading researcher

bld. 1, 14, Krasnokazarmennaya st., Moscow, 111250



K. I. Milovanov
National Research University «Moscow Power Engineering Institute»
Russian Federation

Kirill I. Milovanov, engineer

bld. 1, 14, Krasnokazarmennaya st., Moscow, 111250



References

1. Anicic, B., Lin, W., Kim, Dam-Johansen K.-D., & Wu, H. (2018). Agglomeration mechanism in biomass fluidized bed combustion – Reaction between potassium carbonate and silica sand, Fuel Processing Technology, 173, 182-190.

2. Almark, M., Hiltunen, M. (2005, May 22- 25) Alternative bed materials for high alkali fuels. Proceedings 18th International Conference on Fluidized Bed Combustion, Toronto, Ontario, Canada.

3. Cammarota, A., Chirone, R., & Scala, F. (2005, May 22-25). Bed agglomeration during the fluidized bed combustion of olive husk. Proceedings of FBC2005 18th International Conference on Fluidized Bed Combustion, Canada, Ontario, Toronto.

4. Scala, F. (2018). Particle agglomeration during fluidized bed combustion: Mechanisms, early detection and possible countermeasures. Fuel Processing Technology, 171, 31-38.

5. De Geyter, S., Ohman, M., Bostrom, D., Eriksson, M., & Nordin, A. (2007). Effects of Non-Quartz Minerals in Natural Bed Sand on Agglomeration Characteristics during Fluidized Bed Combustion of Biomass Fuels. Energy & Fuels, 21, 2663-2668.

6. Nuutinen, L. H., Tiainen, M. S., Virtanen, M. E., Enestam, S. H., & Laitinen, R. S. (2004). Coating Layers on Bed Particles during Biomass Fuel Combustion in Fluidized-Bed Boilers. Energy & Fuels, 18, 127-139.

7. Grubor, B. D., Oka, S. N., Ilic, M. S., Dakic, D. V., & Arsic, B. T. (1995). Biomass FBC combustion – bed agglomeration problems. Proc. 13th Int. Conf. on Fluidized Bed Combustion, ASME, 515-522.

8. Perea-Moreno, M.-A., Manzano-Agugliaro, F., & Perea-Moreno A.-J. (2018). Sustainable Energy Based on Sunflower Seed Husk Boiler for Residential Buildings. Sustainability, 10, 3407.

9. Raclavska, H., Juchelkova, D., Roubicek, V., & Matysek, D. (2011). Energy utilisation of biowaste − Sunflower-seed hulls for co-firing with coal. Fuel Processing Technology, 92, 13-20.

10. Lin, W., Dam-Johansen, K.; & Frandsen, F. (2003). Agglomeration in Bio-Fuel Fired Fluidized Bed Combustors. Chem. Eng. J. 2003, 96 (1-3), 171-185.

11. Bartels, M., Lin, W., Nijenhuis, J., Kapteijn, F., van Ommen, J. R. (2008). Agglomeration in Fluidized Beds at High Temperatures: Mechanisms, Detection and Prevention. Prog. Energy Combust. Sci. 34(5), 633-666.

12. Morris, J. D., Sheraz, S., Chilton, S., & Nimmo, W. (2018). Mechanisms and Mitigation of Agglomeration during Fluidize Bed Combustion of Biomass: A Review. Fuel, 230, 452-473.

13. Mettanant, V., Basu, P., & Butler, J. (2009). Agglomeration of Biomass Fired Fluidized Bed Gasifier and Combustor. Can. J. Chem. Eng., 87 (5), 656-684.

14. Visser, H. J. M. M., van Lith, S. C., & Kiel, J. H. A. (2008). Biomass Ash-Bed Material Interactions Leading to Agglomeration in FBC. J. Energy Resour. Technol., 130(1), 1-6.

15. Gatternig, B., Karl, J. (2015). Investigations on the Mechanisms of Ash-Induced Agglomeration in Fluidized-Bed Combustion of Biomass. Energy & Fuels, 29, 931-941.

16. Olofsson, G. G., Ye, Z., Bjerle, I., & Andersson, A. (2002). Bed Agglomeration Problems in Fluidized-Bed Biomass Combustion. Ind. Eng. Chem. Res., 41(12), 2888-2894.

17. Visser, H. J. M., Hofmans, H., Huijnen, H., Kastelein, R., & Kiel, J. H. A. (2008). Biomass Ash - Bed Material Interactions Leading to Agglomeration in Fluidised Bed Combustion and Gasification. Prog. Thermochem. Biomass Convers., 272-286.

18. Hupa, M. (2012). Ash-Related Issues in Fluidized-Bed Combustion of Biomasses: Recent Research Highlights. Energy & Fuels, 26, 4-14.

19. Ghaly, A. E., Ergüdenler, A., & Laufer, E. (1994). Study of Agglomeration Characteristics of Silica Sand-Straw Ash Mixtures Using Scanning Electronic Microscopy and Energy Dispersion X-Ray Techniques. Bioresour. Technol., 48(2), 127-134.

20. De Geyter, S., Öhman, M., Boström, D., Eriksson, M., & Nordin, A. (2007). Effects of Non-Quartz Minerals in Natural Bed Sand on Agglomeration Characteristics during Fluidized Bed Combustion of Biomass Fuels. Energy & Fuels, 21(5), 2663-2668.

21. Nuutinen, L. H., Tiainen, M. S., Virtanen, M. E., Enestam, S. H., & Laitinen, R. S. (2004). Coating Layers on Bed Particles during Biomass Fuel Combustion in Fluidized-Bed Boilers. Energy & Fuels, 18(1), 127-139.

22. Almark, M., Hiltunen, M. (2005, May 22- 25). Alternative bed materials for high alkali fuels. Proceedings of FBC2005 18th International Conference on Fluidized Bed Combustion, Toronto, Ontario, Canada.

23. Jimenez-Gutierrez, J. M., Verlinden, R. A. J., van der Meer, P. C., van der Wielen, L. A. M., & Straathof, A. J. J. (2021). Liquid Hot Water Pretreatment of Lignocellulosic Biomass at Lab and Pilot Scale. Processes, 9, 1518.

24. Runge, T., Pamella Wipperfurth, P., & Zhang, C. (2013). Improving biomass combustion quality using a liquid hot water treatment. Biofuels, 4(1), 73-83.

25. Vamvuka, D., Zografos, D. (2004). Predicting the behaviour of ash from agricultural wastes during combustion. Fuel, 83, 2051-2057.

26. Lebendig, F., Funcia, I., Pérez-Vega, R., & Müller, M. (2022). Investigations on the Effect of Pre-Treatment of Wheat Straw on Ash-Related Issues in Chemical Looping Gasification (CLG) in Comparison with Woody Biomass. Energies, 15, 3422.

27. Abelha, Р., Vilela, С. М., Nanou, Р., Carbo, М., Janssen, А., & Leiser, S. (2019). Combustion improvements of upgraded biomass by washing and torrefaction. Fuel, 253, 1018-1033.

28. Nebyvaev, A., Klimov, D., Ryzhenkov, A., & Brulé, M. (2023). Preliminary Results of Innovative Two-Stage Torrefaction Technology Applied for Thermochemical Treatment of Sunflower Husk. Processes, 11, 2486.

29. Ryabov, G. A. (2022). Co-combustion of coal and fossil fuels – a path to decarbonization of heat and electricity production (review). Thermal Power Engineering, (6), 1-15.

30. Niu, Y., Tan, H., & Hui, S. (2016). Ash-related issues during biomass combustion: Alkali-induced slagging, silicate melt-induced slagging (ash fusion), agglomeration, corrosion, ash utilization, and related countermeasures. Prog. Energy Combust. Sci., 52, 1-61.

31. Ren, X. E., Rokni, Y., Liu, Y.A. (2018). Levendis Reduction of HCl emissions from combustion of biomass by alkali carbonate sorbents or by thermal pretreatment. J. Energy Eng., 144(4), 04018045.

32. Zimmerling, S. (July, 2020). VGB. Essen, Germany, personal communication.

33. Zelikov, E. N., Ryabov, G. A., Dik, E. P., & Tugov, A. N. (2008). Fouling and corrosion of superheaters of boilers at thermal power plants burning municipal solid waste and biomass. Thermal Power Engineering, (11), 73-77. (in Russ.)

34. Oksa, M., Metsäjoki, J., & Kärki, J. (2016). Corrosion testing of thermal spray coatings in a biomass cofiring power plant. Coatings, 6(4), 13.

35. Pitsukha, E. A., Buchilko, É. K., Teplitskii, Y. S. et al. (2023). Specific Features of the Combustion Process and Thermal Calculation of Two-Chamber Cyclone-Bed Furnaces. J. Eng Phys Thermophy, 96, 1875-1883.

36. Pitsukha, E. A., Teplitskii, Y. S. & Buchilko, É. K. (2023). Hydrodynamics of a Cyclone Chamber with a Varying Direction of Tangential Blowing. J. Eng Phys Thermophy, 96, 1290-1303.

37. Teplitskii, Y. S., Pitsukha, E. A. & Roslik, A. R. (2023). Characteristic Features of the Hydrodynamics and Combustion of Fine Fuel Particles in the Vortex Zone of a CycloneGrate-Fired Chamber. J Eng Phys Thermophy, 96, 1162-1171.

38. Pitsukha, E. A., Buchilko, E. K. & Teplitskii, Y. S. (2020). Cyclone-Bed Furnaces: Experimental Studies and Thermal Design. Therm. Eng., 67, 374-386.

39. Ren, X., Sun, R., Chi, H.-H, Meng, X., Li, Y., & Levendis, Y. (2017). Hydrogen chloride emissions from combustion of raw and torrefied biomass. Fuel, 200, 37-46.


Review

For citations:


Milovanov O.Yu., Klimov D.V., Kuzmin S.N., Grigoriev S.V., Milovanov K.I. On the Technology of Increasing the Efficiency and Reliability of Boilers Burning Biowaste in a Fluidized Bed of Inert Material. Theory and Practice of Corrosion Protection. 2024;29(3):32-40. (In Russ.) https://doi.org/10.31615/j.corros.prot.2024.113.3-3

Views: 106


ISSN 1998-5738 (Print)
ISSN 2658-6797 (Online)