

Anticorrosive Zr-containing Sol-gel Сoatings on AA5056 Aluminum Alloy
https://doi.org/10.31615/j.corros.prot.2024.114.4-1
Abstract
Due to the high toxicity of chromating solutions, which include highly toxic hexavalent chromium compounds, and the conversion coatings formed in them, laws have been adopted in most countries restricting or completely prohibiting the use of Cr(VI) compounds in mechanical engineering and electronics products. This publication is devoted to the development of the process of applying a protective sol-gel zirconiumcontaining coating to the surface of the aluminum alloy AA5056. The optimization of the process parameters for the deposition of a functional sol-gel coating was carried out, the physicochemical and mechanical properties of the coating, which could become an alternative to toxic chromate coatings, were investigated. During the work, it was found that the Zr-containing sol-gel coating is comparable in abrasion resistance to chromate films. The results of polarization measurements showed that the application of a multilayer sol-gel coating improves its protective ability. The increase in protective ability is also confirmed by exposure in the salt mist chamber. The time until the first signs of corrosion appear is 435 hours.
About the Authors
O. A. ShlomaRussian Federation
Oksana A. Shloma - graduate student
9, Miusskaya square, Moscow, 125047
A. A. Abrashov
Russian Federation
Alexey A. Abrashov - Ph.D. in Technical Sciences, associate Professor
9, Miusskaya square, Moscow, 125047
N. N. Gavrilova
Russian Federation
Natalia N. Gavrilova, Doctor of Chemistry, associate Professor
9, Miusskaya square, Moscow, 125047
O. V. Zhilina
Russian Federation
Olga V. Zhilina - Ph.D. in Chemistry, associate Professor
9, Miusskaya square, Moscow, 125047
N. S. Grigoryan
Russian Federation
Nelya S. Grigoryan - Ph.D. in Chemistry, associate Professor
9, Miusskaya square, Moscow, 125047
E. V. Novikov
Russian Federation
Egor V. Novikov - student
9, Miusskaya square, Moscow, 125047
References
1. Kendig, M. W., Buchheit, R. G. (2003). Corrosion Inhibition of Aluminium and Alumi num Alloys by Soluble Chromates, Chromate Coatings, and Chromate-Free Coatings. Cor rosion, 59(5), 379-399. doi:10.5006/1.3277570
2. Gheytani, S., Liang, Y., Jing, Y., Xu, J. Q., et al. (2016). Chromate conversion coated aluminium as a light-weight and corrosion-re sistant current collector for aqueous lithium-ion batteries. Journal of Materials Chemistry A.,4(2), 395-399.
3. Ilarionova, A. A. (2017). Aluminum alloys and their heat treatment when used in build ing structures. XVIII International scientific and technical Ural School-seminar of metallolo gists-young scientists, Yekaterinburg, 18, 302 305. (in Russ.)
4. Zhao, J., Xia, L., Sehgal, A., Lu, D. (2001). Effects of chromate conversion coat ings on corrosion of aluminium alloy 2024-T3. Surface and Coatings Technology, 140(1), 51 57. doi:10.1016/S0257-8972(01)01003-9
5. Hughes, A. E., Taylor, R. J. (1997). Chromate Conversion Coatings on 2024 Al Alloy, Surface and Interface Analysis: An International Journal devoted to the de velopment and application of techniques for the analysis of surfaces, interfaces and thin f ilms, 25(4), 223-234. doi:10.1002/(SICI)1096-9918(199704)25:4<223::AIDSIA225>3.0.CO;2-D
6. Gralak, E., Szczepańska, J., Winiarska, K., Tylus, W., Winiarski, J. (2024). The effect of hexafluorozirconic acid concentration on the formation and corrosion resistance of trivalent chromium conversion coatings on AlSi12 Cu1 (Fe) cast alloy. Journal home page for Materials To day Communications, 38, 108409. https://doi.org/10.1016/j.mtcomm.2024.108409
7. Verdalet-Guardiola, X., Saillard, R., Fori, B., Duluard, S., Blanc C. (2020). Comparative analysis of the anticorrosive properties of tri valent chromium conversion coatings formed on 2024-T3 and 2024-T351 aluminium alloys. Corrosion Science, 167, 108508. https://doi.org/10.1016/j.corsci.2020.108508
8. Lushina, M. V., Parshin, S. G. (2011). In novative technologies for anti-corrosion protec tion of aluminum alloy products. Marine Bulle tin, 1(37), 113-115. (in Russ.)
9. Kendig, M. W., Buchheit, R. G. (2003). Corrosion Inhibition of Aluminum and Alumi num Alloys by Soluble Chromates, Chromate Coatings, and Chromate-Free Coating. Corro sion, 59(5), 379-399. doi:10.5006/1.3277570
10. Jeevahan, J., Chandrasekaran, M., Jo seph, B.G., Durairaj, R.B., Mageshwaran, G. (2018). Superhydrophobic surfaces: a review on fundamentals, applications, and challenges. Journal of Coatings Technology and Research, 15, 231-250. doi:10.1007/s11998-017-0011-x
11. Kuznetsov, Y. I., Semiletov, A. M., Chirku nov, A. A., Arkhipushkin, I. A., Kazanskii, L. P. (2018). Protecting aluminum from atmospher ic corrosion via surface hydrophobization with stearic acid and trialkoxysilanes. Russian Journal of Physical Chemistry A, 92(4), 621-629.
12. Abrashov, A., Grigoryan, N., Korshak, Y., Vagramyan, T., Grafov, O., Mezhuev, Y. (2021). Regularities of the Formation of a Green Superhydrophobic Protective Coating on an Aluminum Alloy after Surface Modifica tion with Stearic Acid Solutions. Metals, 11, 1718. https://doi.org/10.3390/met11111718
13. Dehghanghadikolaei, A., Ansary J., Ghoreishi R. (2018). Sol-gel process applica tions: A mini-review. Proceedings of the Nature Research Society, 2(1), 02008-02029.
14. Zand, R. Z., Verbeken, K., Flexer, V., Adriaens, A. (2014). Effects of ceria nanoparticle concentrations on the morphology and corrosion resistance of cerium–silane hybrid coatings on electro-galvanized steel substrates. Materials Chemistry and Physics, 145(3), 450-460.
15. Vaskevich, V. V., Gaishun, V. E., Kova lenko, D. L., Sidsky, V. V. (2011). Protective sol gel coatings with hydrophobic properties. Prob lems of physics, mathematics and technology, 3(8), 15-19. (in Russ.)
16. Grishina, E. P., Kudryakova, N. O., Ramenskaya, L. M. (2019). Application of the sol-gel method for applying an aluminum oxide coating to low-alloy steel. Electroplating and surface treatment, 27(2), 59-68. (in Russ.)
17. Guglielmi, M. (1997). Sol-Gel Coatings on Metals. Journal of Sol-Gel Science and Technology, 8, 443-449.
18. Nofz, M. (2018). Alumina Thin Films. Handbook of Sol-Gel Science and Technology, 765-808.
19. Dervin, S., Pillai, S. C. (2017). An In troduction to Sol-Gel Processing for Aerogel. Sol-Gel Materials for Energy, Environment and Electronic Applications, 1-22.
20. Wang, D., Bierwagen, G. P. (2009). Sol gel coatings on metals for corrosion protection. Progress in Organic Coatings, 64, 327-338.
21. Agafonov, A. V., Vinogradov, A. V. (2009). Sol-gel synthesis, preparation and characterization of photoactive TiO2 with ul trasound treatment. Journal of sol-gel science and technology, 49(2), 180-185.
22. Xia, W., Li, N., Deng, B., Zheng, R. et al. (2019). Corrosion behavior of a sol-gel ZrO2 pore-sealing film prepared on a micro-arc oxi dized aluminum alloy. Ceramics International, 45(8), 11062-11067.
23. Abrashov, A. A., Sundukova, A. V., Zhilina, O. V., Gavrilova, N. N., Shloma, O. A. (2023). Protective cerium-containing sol-gel coatings on hot-dip galvanized steel. Interna tional Journal of Corrosion and Scale Inhibi tion, 12(3), 878-887.
24. Kaszuba, M., McKnight, D., Connah, M., McNeil-Watson, F. (2007). Measurement of particle sizes in the subnanometer range by dynamic light scattering. Springer Science.
25. GOST 9.302-88. (1990). Metal and non-metal inorganic coatings. Control meth ods. (in Russ.)
26. Roeseler, A., Korte, E. (2006). Infra red Spectroscopic Ellipsometry. Handbook of Vubrational Spectroscopy, 1065-1090.
27. Shvets, V. A., Spesivtsev, E. V., Rykhlit sky, S. V., Mikhailov, N. N. (2009). Ellipsometry is a precision method for monitoring thin–film structures with subnanometer resolution. Rus sian nanotechnology, 4(3-4), 72-84. (in Russ.)
28. Laha, P., Schram, T., Terryn, H. (2002). Use of spectroscopic ellipsometry to study Zr/ Ti films on Al. Surface and Interface Analysis: An International Journal devoted to the devel opment and application of techniques for the analysis of surfaces, interfaces and thin films, 34(1), 677-680.
29. ASTM F735-2022. Standard Test Methn od for Abrasion Resistance of Transparent Plasc tics and Coatings Using the Oscillating Sand Method. 2022.
30. Shaldaev, V. S., Malofeeva, A. N., Davydov, A. D. (2014). Determination of the corrosion rate of molybdenum, rhenium and their alloys in sodium chloride solution by Taf elian extrapolation. Electrochemistry, 50(10), 1106-1110. (in Russ.)
31. McCafferty, E. (2005). Validation of cor rosion rates measured by the Tafel extrapolation method. Corrosion Science, 47, 3202-3215.
32. ASTM B117-19. Standard Practice for Operating Salt Spray (Fog) Apparatus. 2019.
33. Checmanowski, J. G., Szczygieł, B. (2013). Effect of a ZrO2 coating deposited by the sol-gel method on the resistance of FeCrAl alloy in high-temperature oxidation conditions. Materials Chemistry and Physics, 139(2-3), 944-952.
34. Evstropyev, S. K., Nikonorov, N. V. (2018). Liquid methods for obtaining optical nanomaterials. Study guide. Saint Petersburg: ITMO University. (in Russ.)
35.
Review
For citations:
Shloma O.A., Abrashov A.A., Gavrilova N.N., Zhilina O.V., Grigoryan N.S., Novikov E.V. Anticorrosive Zr-containing Sol-gel Сoatings on AA5056 Aluminum Alloy. Theory and Practice of Corrosion Protection. 2024;29(4):6-17. (In Russ.) https://doi.org/10.31615/j.corros.prot.2024.114.4-1