

CO2 Corrosion Analysis of Water Samples from the Western Caspian Sea: Insights from Sumqayit, Neftchala, Bilgah, and Pirallahi
https://doi.org/10.31615/j.corros.prot.2024.114.4-6
Abstract
Corrosion caused by carbon dioxide (CO2 ) poses considerable problems to infrastructure in maritime settings, significantly impacting the oil and gas industries. This study examines the CO2 corrosion rates in water samples obtained from four significant sites in the western Caspian Sea: Sumqayit, Neftchala, Bilgah, and Pirallahi. We utilised gravimetric analysis to quantify the corrosion rates of steel plates submerged in these fluids for five hours at ambient temperature. The findings indicated differing degrees of corrosion aggressiveness throughout the locales, with Sumqayit and Neftchala demonstrating the most outstanding rates. This underscores the geographical variability in water chemistry and its influence on corrosion. Comprehending these patterns is vital for formulating tailored corrosion control strategies, especially in industries such as oil, gas, and transportation, where the durability of infrastructure is paramount. The work establishes a foundation for future investigations into corrosion inhibitors, providing insights for improving protective strategies in the industrial settings of the Caspian area.
About the Authors
V. M. AbbasovAzerbaijan
Vagif M. Abbasov - Аcademician, director general
AZ 1025, Baku, Khojaly Avenue, 30
D. B. Aghamaliyeva
Azerbaijan
Durna B. Aghamaliyeva - Doctor of philosophy on chemical sciences, assistant professor, head of the laboratory
AZ 1025, Baku, Khojaly Avenue, 30
E. A. Aydinsoy
Azerbaijan
Emil A. Aydinsoy - postgraduate, junior scientific staff
AZ 1025, Baku, Khojaly Avenue, 30
Z. Z. Aghamaliyev
Azerbaijan
Zaur Z. Aghamaliyev - Doctor of technical sciences, assistant professor, head of the laboratory
AZ 1025, Baku, Khojaly Avenue, 30
References
1. Nabiyeva, N. D., Aghamaliyeva, D. B., Is mayilov, T. A., & Mammadaliyev, Y. H. (2021). Study of inhibitory-bactericidal properties of the byproduct of white oil production against deemulsifier and corrosion. Processes of Pet rochemistry and Oil-Refining (PPOR), 22(4), 546-551.
2. Abbasov, V. M., Aghamaliyeva, D. B., Ismayilov, T. A., & Huseynova, G. H. (2024). The inhibitory effect of sunflower oil amide sul fate product on the corrosion aggressiveness of Karabakh clay water. Processes of Petrochem istry and Oil-Refining (PPOR), Special Issue 1, 94-102. https://doi.org/10.62972/1726-4685.si2024.1.94
3. Abbasov, V. M., Aghamaliyeva, D. B., Afandiyeva, L. M., Aghamaliyev, Z. Z., Aliye va, N. M., Pashayeva, Z. N., & Gurbanova, F. C. (2024). The study of the effect of alkylhal ogenide complexes of amidoamine of corn oil on the kinetics of CO2 corrosion. Processes of Petrochemistry and Oil-Refining (PPOR), 02, 313-322. https://doi.org/10.62972/17264685.2024.2.313
4. Ezizbeyli, A. R., Talybov, G. M., Aghamal iyeva, D. B., & Mehtizada, U. S. (2021). Chemo- and regio-selective alkoxyhalogenation of ally lmethacrylate with saturated C7-C10 - alkanol-1 and investigation on CO2 corrosion of metals and biocorrosion. Processes of Petrochemistry and Oil-Refining (PPOR), 22(1), 159-171.
5. Choi, Y., & Nešić, S. (2010). Determin ing the corrosive potential of CO2 transport pipeline in high P(CO2 )–water environments. International Journal of Greenhouse Gas Con trol, 5(4), 788–797. https://doi.org/10.1016/j.ijggc.2010.11.008
6. Afandiyeva, L. M., Abbasov, V. M., Ag amaliyeva, D. B., Mursalov, N. I., ShZ, J., Mam madova, N. M., Seyidahmadova, F. N., & Tagi zade, Z. Y. (2016). Investigation of imidazoline derivatives obtained from synthetic petroleum acids as corrosion inhibitors. Journal of Advanc es in Chemistry, 11(1), 3372–3381. https://doi.org/10.24297/jac.v11i1.2225
7. Mursalov, N. I., Jabrailzadeh, Sh. Z., Ab basov, V. M., Guliyev, A. A., Guluzadeh, A. G., Badalova, G. N., & Duzdaban, Kh. R. (2015). Research into effect of imidazoline derivatives on hydrogen sulfide corrosion. Chemical Prob lems, 13(2), 159-164. (In Azerbaijani).
8. Abbasov, V. M., Mamadbayli, E. H., Ag amaliyeva, D. B., Mahmudova, L. A., Tahiro va, F. F., Babayeva, V. H., & Abbasova, Kh. A. (2017). Effect of inorganic complexes of imida zoline based on synthetic petroleum acids and triethylentetramin against carbon dioxide corro sion. Chemical Problems Journal, 4, 364-369.
9. Abbasov, V. M., Aliyeva, L. I., Efendiye va, L. M., Nuriyev, L. G., Agamaliyeva, D. B., Gadzhiyeva, S. Ya., & Mamedova, N. M. (2016). Influence of imidazoline derivatives of synthet ic oil acids on kinetics of process of CO2-steel corrosion. Processes of Petrochemistry and Oil-Refining (PPOR), 17(1), 3-8.
10. Abbasov, V. M., Agamaliyeva, D. B., Gurbanova, F. J., Talybov, A. H., Efendiyeva, L. M., Ayyubov, I. H., Kahramanova, K. A., & Seidzade, R. Kh. (2023). Study of pentyl bro mide complex of amidoamine of sunflower acids as a corrosion inhibitor. Zenodo (CERN Europe an Organization for Nuclear Research), 50, 5-6. https://doi.org/10.5281/zenodo.7647349
11. Ismayilov, I. (2014). Adsorption and cor rosion inhibitive properties of novel surfactants in the series of fatty acids based on palm oil on carbon steel in CO2-containing solution. International Research Journal of Pure and Applied Chemistry, 4(3), 299-314. https://doi.org/10.9734/irjpac/2014/4524
12. Agamalieva, D. B., Abbasov, M. M., Ab basov, V. M., & Alieva, Kh. Kh. (2022). Synthesis of alkylamine complexes based on maleic acids and investigation of bactericidal properties. The ory and Practice of Corrosion Protection, 27(1), 42-48. (In Russ). https://doi.org/10.31615/j.corros.prot.2022.103.1-4
13. Ibragimova, M. D., Mamedkhanova, S. A., Abdulazade, A. B., Agamalieva, D. B., Sei dova, S. A., & Mamedova, N. M. (2020). Influ ence of oligomethylenaryl sulphonates based on the light gas oil of catalytic cracking on the process of biocorrosion. Theory and Practice of Corrosion Protection, 25(4), 18-25. https://doi.org/10.31615/j.corros.prot.2020.98.4-2
14.
Review
For citations:
Abbasov V.M., Aghamaliyeva D.B., Aydinsoy E.A., Aghamaliyev Z.Z. CO2 Corrosion Analysis of Water Samples from the Western Caspian Sea: Insights from Sumqayit, Neftchala, Bilgah, and Pirallahi. Theory and Practice of Corrosion Protection. 2024;29(4):53-59. (In Russ.) https://doi.org/10.31615/j.corros.prot.2024.114.4-6