Preview

Theory and Practice of Corrosion Protection

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Electrodeposition of Zinc-Nickel Alloy from Alkaline Amine-containing Electrolyte

https://doi.org/10.31615/j.corros.prot.2025.116.2-4

Abstract

This work proposes a method for synthesizing an amine-containing compound from polyamine (PA-10) and an oxirane series compound (M-10) capable of forming strong, alkaline-stable complexes with Ni2+ ions.

The effect of the ratio of the initial monomers for synthesizing the complexing component of the alkaline electrolyte for the process of electrodeposition of zinc-nickel alloy, as well as the molar ratio of Ni2+ and the complexing component (PA-10M1.5) in the solution on the Ni content in the alloy and the appearance of the resulting coatings was studied.

It was established that the optimal molar ratio of the initial monomers ([PA-10]:[M-10]) for the synthesis of the complexing component of the PA-10M1.5 electrolyte is 1.5:1, and the most promising from the technological point of view is a solution based on PA-10M1.5 with a molar ratio of nickel ions to the complexing component in the electrolyte of 1:2.

An alkaline electrolyte has been developed for the electrodeposition of protective coatings with a zinc-nickel alloy containing (g/l): Zn2+ – 9; Ni2+ – 3.5; NaOH – 112.5; PA-10M1.5 – 31.3, which allows deposition of zinc-nickel alloy coatings containing 12...14 %wt. nickel on a steel surface at a cathodic current density of 0.5…5.0 A/dm2, t = 22…40 °C and mechanical stirring. The corrosion resistance and protective capacity of the obtained coatings were determined.

About the Authors

M. A. Shelukhin
Dmitry Mendeleev University of Chemical Тесhпоlоgy of Russia
Russian Federation

Mikhail A. Shelukhin, postgraduate

9, Miusskaya square, Moscow, 125047



A. R. Khokhryakov
Dmitry Mendeleev University of Chemical Тесhпоlоgy of Russia
Russian Federation

Andrey R. Khokhryakov, student

9, Miusskaya square, Moscow, 125047



M. A. Podshibnev
Dmitry Mendeleev University of Chemical Тесhпоlоgy of Russia
Russian Federation

Mikhail A. Podshibnev, postgraduate

9, Miusskaya square, Moscow, 125047



N. S. Grigoryan
Dmitry Mendeleev University of Chemical Тесhпоlоgy of Russia
Russian Federation

Nelya S. Grigoryan, Cand. Sci. in Chemistry, professor

9, Miusskaya square, Moscow, 125047



N. A. Asnis
Dmitry Mendeleev University of Chemical Тесhпоlоgy of Russia
Russian Federation

Naum A. Asnis, Cand. Technical Sciences, Leading Researcher

9, Miusskaya square, Moscow, 125047



А. A. Abrashov
Dmitry Mendeleev University of Chemical Тесhпоlоgy of Russia
Russian Federation

Aleksey A. Abrashov, Cand. Technical Sciences, associate professor

9, Miusskaya square, Moscow, 125047



T. A. Vagramyan
Dmitry Mendeleev University of Chemical Тесhпоlоgy of Russia
Russian Federation

Tigran A. Vagramyan, Doctor of Technical Sciences, Head of department

9, Miusskaya square, Moscow, 125047



References

1. Baptista, E., Praiksha, P., Rösch, M., & Serov, A. N. (2012). Protective coatings with zinc-nickel alloy. Galvanotekhnika i obrabotka poverkhnosti, 1, 29-31. (in Russ.)

2. Brenner A. (1963). Electrodeposition of Alloys. Principle and Practice, II, 267-407.

3. N. Zech, E.J. Podlaha, D. Landolt. (1999). Anomalous codeposition of Iron group metals. Mathematical model. Journal of the Electrochemical Society, 146(8), 2892-2900.

4. Kharlamov, V. I., Vakka, A. V., Azarchenko, T. L. & Vagramyan, T. A. (1991). On the issue of anomalous deposition of zinc-nickel alloy from sulfate-chloride electrolytes. Elektrokhimiya, 27(8), 1062-1065.

5. Shestakov, M. A., Zhikhareva, I. G. & Shchipanov, V. P. (2006). Prediction of conditions for the formation of intermetallics. Khimiya i khimicheskie tekhnologii, 49(12), 62-66. (in Russ.)

6. Kraus Ralph (2013). Acid or alkaline zinc-nickel? A systematic comparison. Galvanotekhnika i obrabotka poverkhnosti, 4, 24-29. (in Russ.)

7. Anwar, S., Khan, F., Zhang, Y. & Caines, S. (2019). Optimization of zinc–nickel film electrodeposition for better corrosion resist-l ant characteristics. The Canadian Journal of Chemical Engineering, 97(9), 2426-2439. https://doi.org/10.1002/cjce.23521 (in Russ.)

8. Conde, A., Arenas, M. A. & de Damborenea, J. J. (2011). Electrodeposition of Zn-Ni coatings as Cd replacement for corrosion protection of high strength steel. Corrosion Science, 53, 1489-1497.

9. Fedi, B., Gigandet, M. P., Hihn, J. Y. & Mierzejewski S. (2016). Structure determination of electrodeposited zinc-nickel alloys: thermal stability and quantification using XRD and potentiodynamic. Electrochimica Acta, 215, 652-666. https://doi.org/10.1016/j.electacta.2016.08.141

10. Maizelis, A., Bairachny, B. (2017). Voltammetric Analysis of phase composition of Zn-Ni alloy thin films electrodeposited from weak alkaline polyligand electrolyte. Journal of Nano- and Electronic Physics, 9(5), 1-7. https://doi.org/10.21272/jnep.9(5).05010

11. Blejan, D., Muresan, L. M. (2013). Corrosion behavior of Zn-Ni-Al2O3 nanocomposite coatings obtained by electrodeposition from alkaline electrolytes. Materials and Corrosion, 64(5), 433-438. https://doi.org/10.1002/maco.201206522

12. Zech, N., Podlaha, E. J. & Landolt, D. (1999). Anomalous codeposition of Iron group metals. Experimental Results. Journal of the Electrochemical Society, 146(8), 2886-2891. https://doi.org/10.1149/1.1392024

13. Gusev, M. S. (2008). Kinetic regularities of electrodeposition of alloys and composite electrochemical coatings based on zinc obtained from low-concentration acidic electrolytes: Dissertation of Candidate of Chemical Sciences. Saratov: Saratov State Technical University, 56 p.

14. Adudin, I. A., Solopchuk, M. S., Grigoryan, N. S., Serov, A. N., Asnis, N. A. & Vagramyan, T. A. (2022) Decontamination of waste water in adrag-out recovery bath of zinc-nickel alloy electrodeposition. Galvanotekhnika i obrabotka poverkhnosti, 28(3), 57-62. https://doi.10.47188/08695326_2020_28_3_57 (in Russ.)

15. GOST 9.305-89. Metallic and non-metallic inorganic coatings. Operations of technological processes for obtaining coatings. (in Russ.)

16. Shaldaev, V. S., Malofeeva, A. N. & Davydov, A. D. (2014). Determination of the corrosion rate of molybdenum, rhenium, and their alloys in sodium chloride solution using Tafel extrapolation. Elektrokhimiya, 50(10), 1106-1110. (in Russ.)

17. McCafferty, E. (2005). Validation of corrosion rates measured by the Tafel extrapolation method. Corrosion Science, 47, 3202-3215. https://doi.org/10.1016/j.corsci.2005.05.046 (in Russ.)

18. Adudin, I. A., Grigoryan, N. S., Serov, A. N., Vagramyan, T. A., Orlova, K. A., Shelukhin, M.A. & Aleshina, V. Kh. (2021). A study of zinc–nickel alloy electrodeposition from an alkaline electrolyte. Int. J. Corros. Scale Inhib., 10(2), 580-591. https://doi.org/10.17675/2305-6894-2021-10-2-6

19. Okulov, V. V., Kudryavtsev, V. N. (2008). Zinc Plating. Techniques and Technology. Supplement to the journal «Galvanotekhnika i obrabotka poverkhnosti», Moscow: Globus, 84-89. (in Russ.)


Review

For citations:


Shelukhin M.A., Khokhryakov A.R., Podshibnev M.A., Grigoryan N.S., Asnis N.A., Abrashov А.A., Vagramyan T.A. Electrodeposition of Zinc-Nickel Alloy from Alkaline Amine-containing Electrolyte. Theory and Practice of Corrosion Protection. 2025;30(2):40-55. (In Russ.) https://doi.org/10.31615/j.corros.prot.2025.116.2-4

Views: 6


ISSN 1998-5738 (Print)
ISSN 2658-6797 (Online)