Preview

Theory and Practice of Corrosion Protection

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Electrochemical Determination of Corrosion Rate of 12X18H10T Steel and EP760 High Alloy in Salt Melt

https://doi.org/10.31615/j.corros.prot.2025.118.4-2

Abstract

Linear polarization resistance (LPR), voltammetry, and gravimetry methods used to determine the rate and nature of corrosion of 12X18H10T steel and EP760 alloy (KHN65MVU) at 300…500 °C in a KAlCl4 and ZrCl4 melt designed to produce zirconium by extractive rectification. The corrosion rate of 12X18H10T steel in an aerated salt melt at temperatures up to 450 °C is extremely high and can exceed 100 mm/year. The use of argon purging and aluminum melt purification can significantly reduce the corrosion rate of 12X18H10T steel and EP760 alloy in a chloride melt. The automatic LPR method used for corrosion monitoring of 12X18H10T steel and EP760 alloy in chloride melts at temperatures up to 450 °C. The use of the Tafel extrapolation method in the classical version is difficult due to an increase in the surface roughness of the electrodes, the duration of measurements, and the dependence of the corrosion rate on the exposure time.

About the Authors

N. G. Anufriev
Frumkin Institute of Physical Chemistry and Electrochemistry Russian Academy of Sciences (IPCE RAS)
Россия

Nikolay G. Anufriev, Cand. Sci. in Chemistry, researcher

bld. 4, 31, Leninskiy pr., Moscow, 119071



Y. A. Kuzenkov
Frumkin Institute of Physical Chemistry and Electrochemistry Russian Academy of Sciences (IPCE RAS)
Россия

Yury A. Kuzenkov, Cand. Sci. in Chemistry, senior researcher

bld. 4, 31, Leninskiy pr., Moscow, 119071



References

1. Fedoseev S., Tcvetkov P. & Sidorov N. (2017). Development potential of Russian zirconium industry on world markets. Journal of Business and Retail Management Research (JBRMR), 12(1), 41-48. https://doi.10.24052/JBRMR/V12IS01/DPORZIOWM

2. Boyarko, G. Yu., Bolsunovskaya, L. M. et al. (2023). Review of the zirconium industry in Russia: status, problems of raw material supply. Mining sciences and technologies, 8(2), 128-140. https://doi.10.17073/2500-0632-2023-02-83. (in Russ.)

3. Arzhatkina, O. A., Serov, N. G. Method for separating zirconium and hafnium tetrachlorides by extractive rectification: patent. RF No. 2538890, C01G 25/04, C01G 27/04. Op. 2015.01, effective from 10 2013.09.06. (in Russ.)

4. Filatov, E. S., Zaikov, Yu. P., Kotrekhov, V. A. et al. Method for preparing potassium chloroaluminate melt for separating zirconium and hafnium chlorides: patent. RF 2431700, C25C3/26, C01G25/04. Op. 2011.10.20. (in Russ.)

5. Derbyshev, A. S., Chineikin, S. V., Shipulin, S. A. et al. Method of corrosion protection of equipment operating in a potassium chloroaluminate melt environment: patent. RF 2567430, C25C3/26, C01G25/04, C01B9/02. Op. 2015-11-10. (in Russ.)

6. Anufriev, N. G. (2012). New Possibilities of Using the Linear Polarization Resistance Method in Corrosion Research and Practice. Corrosion: materials, protection, (1), 36-43. (in Russ.)

7. Stern, M. and Geary, A. L. (1957). A Theoretical Analysis of the Shape of Polarization Curves. J. Electrochem. Soc. 104, 56-63

8. NACE International Publication 3T199. No. 24203. Techniques for Monitoring Corrosion and Related Parameters in Field Applications

9. Anisimova, M. Yu., Bataev, S. V., Belonogov, A. V., et al. Method of corrosion protection of equipment operating in a potassium chloroaluminate melt environment: patent. RF 2567430 C2, C01B 9/02, C25C 3/26, C01G 25/04. Op. 11/10/2015, Bull. No. 31. (in Russ.)

10. Karpov, V. V. (2022). Electrochemical behavior and corrosion activity of chloroaluminate zirconium-containing melts. Abstract of a PhD dissertation, Yekaterinburg. (in Russ.)

11. Bakai, A. S., Chechkin, A. V. & Zhuk, V. V. (2005). Mechanical, physical, corrosion and radiation properties of Hastelloy N alloys in fluoride salt melts: review. Harkov: NNC HFTI ХФТИ, 48 pp. (in Russ.)

12. Zhuk, N. P. (2015). Corrosion and protection of metals. Calculations. Moscow: Aliance, 330 pp. (in Russ.)

13. Kasatkin, A. V. (2024) Electrochemical methods and computer programs for assessing the corrosion state of metal. Corrosion: protection of materials and research methods. 4, 118-140. https://doi.10.61852/2949-3412-2024-2-4-118-140. (in Russ.)

14. Nikitina, E. V., Karfidov, E. A. & Zaikov, Yu. P. (2021) Corrosion of promising metallic materials in fluoride melts for molten salt reactors. Rasplavy, (1), 21-45. https://doi.10.31857/S0235010621010072. (in Russ.)


Review

For citations:


Anufriev N.G., Kuzenkov Y.A. Electrochemical Determination of Corrosion Rate of 12X18H10T Steel and EP760 High Alloy in Salt Melt. Theory and Practice of Corrosion Protection. 2025;30(4):16-28. (In Russ.) https://doi.org/10.31615/j.corros.prot.2025.118.4-2

Views: 31

JATS XML

ISSN 1998-5738 (Print)
ISSN 2658-6797 (Online)