On the decisive role of biofilms of microorganisms in the initiation and development of microbiological corrosion of metals (part 2)
https://doi.org/10.31615/j.corros.prot.2023.107.1-5
Abstract
The reliability of technical products is determined by their resistance to the influence of the external environment, the natural component of which are destructor microorganisms (bacteria, yeast, microscopic fungi, etc.).
The low efficiency of protecting metals from biocorrosion is largely due to insufficient knowledge of all aspects of the damaging effects of microorganisms. There are no quantitative data on the processes of biodamage of equipment elements in real operating conditions. To date, reliable methods for diagnosing and predicting the durability of metals and their structures under conditions of interaction with wildlife have not been developed.
In this work, an attempt was made to explain the role of biofilms of microscopic fungi as the important factor in the mycological corrosion of metals. The formation and accumulation of a corrosive medium is possible as a result of the metabolic processes of microscopic fungi that form a biofilm. A detailed determination of the mechanism of biocorrosion of metals is a complex scientific problem.
The purpose of this article is to analyze experimental data on the study of aerobic biocorrosion of metals mediated by the metabolic activity of biofilms of bacteria and microscopic fungi
About the Authors
D. V. BelovRussian Federation
Denis V. Belov, Ph.D. in Chemistry, Associate Professor
46, Ul’yanov Street, Nizhny Novgorod
S. N. Belyaev
Russian Federation
Sergey N. Belyaev, Ph.D. in Chemistry, Researcher
46, Ul’yanov Street, Nizhny Novgorod
References
1. Okorie I.E., Chukwudi N.R.A review of fungal influenced corrosion of metals // Zastita Materijala. – 2021. – V. 62, № 4. – P. 333-339. doi: 10.5937/zasmat2104333O
2. Picioreanu C., Loosdrecht M.V. A Mathematical Model for Initiation of Microbiologically Influenced Corrosion by Differential Aeration // Journal of The Electrochemical Society. – 2002. – V. 149, № 6. – B211-B223. doi: 10.1149/1.1470657
3. Tobin E., Brenner S. Nanotechnology Fundamentals Applied to Clinical Infectious Diseases and Public Health // Open Forum Infectious Diseases. – 2021. – V. 8, № 12. Article number ofab583. doi: 10.1093/ofid/ofab583
4. De Jong A.W., Hagen F. Attack, Defend and Persist: How the Fungal Pathogen Candida auris was Able to Emerge Globally in Healthcare Environments // Mycopathologia. – 2019. – V. 184. – P. 353-365. doi: 10.1007/s11046-019-00351-w
5. Martinez L.R., Fries B.C. Fungal Biofilms: Relevance in the Setting of Human Disease // Current Fungal Infection Reports. – 2010. – V. 4, № 4. – P. 266-275. doi: 10.1007/s12281-010-0035-5
6. Gonçalves L.N.C., Costa-Orlandi C. B., Bila N.M., Vaso C.O., Da Silva R.A.M., Mendes-Giannini M.J.S., Fusco-Almeida A.M. Biofilm Formation by Histoplasma capsulatum in Different Culture Media and Oxygen Atmospheres // Frontiers in Microbiology. – 2020. – V. 11. Article number 1455. doi: 10.3389/fmicb.2020.01455
7. Kolter R., Greenberg E. P. The superficial life of microbes // Nature. – 2006. – V. 441, № 7091. – P. 300-302. doi: 10.1038/441300a.
8. Fanning S., Mitchell A. P. Fungal Biofilms // PLoS Pathogens. – 2012. – V. 8, № 4. Article number: e1002585. doi: 10.1371/journal.ppat.1002585
9. González-Ramírez A. I., Ramírez-Granillo A., Medina-Canales M. G., Rodríguez-Tovar A. V., Martínez-Rivera M. A. Analysis and description of the stages of Aspergillus fumigatus biofilm formation using scanning electron microscopy // BMC Microbiology. – 2016. – V. 16, № 1. doi: 10.1186/s12866-016-0859-4
10. Singhal D., Baker L., Wormald P.-J., Tan L. Aspergillus Fumigatus Biofilm on Primary Human Sinonasal Epithelial Culture // American Journal of Rhinology & Allergy. – 2011. – V. 25, № 4. – P. 219–225. doi: 10.2500/ajra.2011.25.3622
11. Desai J.V., Mitchell A.P., Andes D.R. Fungal Biofilms, Drug Resistance, and Recurrent Infection // Cold Spring Harbor Perspectives in Medicine. – 2014. – V. 4, № 10. Article number a019729. doi: 10.1101/cshperspect.a019729
12. Sardi J.D.C.O., Pitangui N.D.S., Rodríguez-Arellanes G., Taylor M.L., Fusco- Almeida A.M., Mendes-Giannini M.J.S. Highlights in pathogenic fungal biofilms // Revista Iberoamericana de Micología. – 2014. –V. 31, № 1. – P. 22-29. doi: 10.1016/j.riam.2013.09.014
13. Belyakova, G. A., Dyakov, Yu. T., Tarasov, K. L. (2006). Botany: in 4 volumes. M.: Publishing Center «Academy». Vol. 1. Algae and mushrooms. pp. 59-64 (mushrooms). ISBN 5-7695-2731-5
14. Gadd G.M. Geomycology: biogeochemical transformations of rocks, minerals, metals and radionuclides by fungi, bioweathering and bioremediation // Mycological Research. – 2007. – V. 111, № 1. – P. 3-49. doi: 10.1016/j.mycres.2006.12.001
15. Fogarty R.V., Tobin J.M. Fungal melanins and their interactions with metals // Enzyme and Microbial Technology. – 1996. – V. 19, № 4. – P. 311-317. doi: 10.1016/0141-0229(96)00002-6
16. Siqueira V.M., Lima N. Biofilm Formation by Filamentous Fungi Recovered from a Water System // Journal of Mycology. 2013. Article number 152941. doi: 10.1155/2013/152941
17. Siqueira V.M., Lima N. Biofilm Formation by Filamentous Fungi Recovered from a Water System // Journal of Mycology. – 2013. Article ID 152941, 9 pages. doi: 10.1155/2013/152941
18. Shamraychuk, I. L., Belyakova, G. A., Eremina, I. M., Kurakov, A. V., Belozersky, M. A., Dunaevsky, Ya. E. (2020). Fungal proteolytic enzymes and their inhibitors as promising biocidal antifungal agents (Review). Bulletin of Moscow University. Series 16. Biology, 75(3), 123-130.
19. Fanning S., Mitchell A.P. Fungal Biofilms // PLoS Pathogens. – 2012. – V. 8, № 4. Article number e1002585. doi: 10.1371/journal.ppat.1002585
20. Zvyagintsev, D. G. (1973). Interaction of microorganisms with solid surfaces / D. G. Zvyagintsev. Moscow: Moscow University Press, 176.
21. Zvyagintsev, D. G. (1985). Adhesion of microorganisms and biodamage. Biodamage, methods of protection, Poltava, 12-19.
22. Gabitov, R. A., Nadeeva, G. V., Bagaeva, T. V. (2014). Adhesive properties of micromycetes of the genus Fusarium. Biotechnology. A look into the future: Proceedings of the III International Scientific Internet Conference: in 2 volumes, Kazan, March 25-26 2014, 39-41.
23. Kaznacheev, I.V., Gumargalieva, K.Z., Mironova, S.N., & Moiseev, Yu.V. (1988). Adhesion of various microscopic fungi to hydrophobic and hydrophilic materials. Journal of Microbiology, 50(6), 68-70.
24. Gorbushina, A. A., Panina, L. K. (1992). Adhesion of micromycete conidia to polymeric materials. Mycology and phytopathology, 26(5), 372-377.
25. Rather M. A., Gupta K., Mandal M. Microbial biofilm: formation, architecture, antibiotic resistance, and control strategies // Brazilian Journal of Microbiology. – 2021. – V. 52, № 12. – P. 1-18. doi: 10.1007/s42770-021-00624-x
26. Flemming H.-C., Wingender J. The biofilm matrix // Nature Reviews. Microbiology. – 2010. – V. 8, № 9. – P. 623-633. doi: 10.1038/ nrmicro2415
27. Gravelat F.N., Beauvais A., Liu H., Lee M.J., Snarr B.D., Chen D., Sheppard D.C. Aspergillus Galactosaminogalactan Mediates Adherence to Host Constituents and Conceals Hyphal β-Glucan from the Immune System // PLoS Pathogens. – 2013. – V. 9, № 8. Article number e1003575. doi: 10.1371/journal.ppat.1003575
28. Fox E.P., Singh-Babak S.D., Hartooni N., Nobile C.J. Biofilms and Antifungal Resistance / Antifungals: From Genomics to Resistance and the Development of Novel AgentsChapter: Biofilms and Antifungal Resistance Publisher: Caister Academic Press, 2015. doi: 10.21775/9781910190012.04.
29. Videla H. A. Biocorrosion and biofouling of metals and alloys of industrial usage: present state of the art at the beginning of the new millennium // Revista De Metalurgia. – 2003. – V. 39. – P. 256-264. doi:10.3989/REVMETALM.2003.V39.IEXTRA.1128
30. Imo E. O., Orji J. C., Nweke C. O. Influence of Aspergillus fumigatus on corrosion behaviour of mild steel and aluminium // International Journal of Applied Microbiology and Biotechnology Research. – 2018. – V. 6. – P. 61-69.
31. Imo E. O., Chidiebere A. M. Fungal influenced corrosion of aluminium in the presence of Acremonium kiliense // International Journal of Applied Microbiology and Biotechnology Research. – 2019. – V. 7. – P. 1-6.
32. Juzeliūnas E., Ramanauskas R., Lugauskas A., Samulevičienė M., Leinartas K. Microbially influenced corrosion acceleration and inhibition. EIS study of Zn and Al subjected for two years to influence of Penicillium frequentans, Aspergillus niger and Bacillus mycoides // Electrochemistry Communications. – 2005. – V. 7, № 3. – P. 305-311. doi: 10.1016/J.ELECOM.2005.01.012
33. Juzeliūnas E., Ramanauskas R., Lugauskas A., Leinartas K., Samulevičienė M., Sudavičius A., Juškėnas R. Microbially influenced corrosion of zinc and aluminium – Two-year subjection to influence of Aspergillus niger // Corrosion Science. – 2007. – V. 49, № 11. – P. 4098-4112. doi: 10.1016/j.corsci.2007.05.004
34. Jirón-Lazos U., Corvo F., De la Rosa S.C., García-Ochoa E.M., Bastidas D.M., Bastidas J. M. Localized corrosion of aluminum alloy 6061 in the presence of Aspergillus niger // International Biodeterioration & Biodegradation. – 2018. – V. 133. – P. 17-25. doi: 10.1016/j.ibiod.2018.05.007
35. Wang J., Xiong F., Liu H., Zhang T., Li Y., Li C., Liu H. Study of the corrosion behavior of Aspergillus niger on 7075-T6 aluminum alloy in a high salinity environment // Bioelectrochemistry. – 2019. – V. 129. – P. 10-17. doi: 10.1016/j.bioelechem.2019.04.020
36. Lugauskas A., Leinartas K., Grigucevičienė A., Selskienė A., Binkauskienė E. Possibility of micromycetes detected in dust to grow on metals (Al, Fe, Cu, Zn) and on polyaniline-modified Ni // Ekologija. – 2008. – V. 54. – P. 149-157. doi: 10.2478/V10055-008-0023-Z
37. Zhang Y., He J., Zheng L., Jin Z., Liu H.,Liu L., Gao Z., Meng G., Liu H., Liu H. Corrosion of aluminum alloy 7075 induced by marine Aspergillus terreus with continued organic carbon starvation // Materials Degradation (npj). – 2022. – V. 6, № 1(27). – P. 1-12. doi: 10.1038/s41529-022-00236-2
38. Gadd G.M., Bahri-Esfahani J., Li Q., Rhee Y.J., Wei Z., Fomina M., Liang X. Oxalate production by fungi: significance in geomycology, biodeterioration and bioremediation // Fungal Biology Reviews. – 2014. – V. 28, № 2-3. – P. 36-55. doi: 10.1016/j.fbr.2014.05.001
39. Ceci A., Rhee Y.J., Kierans M., Hillier S., Pendlowski H., Gray N., Gadd G.M. Transformation of vanadinite [Pb5(VO4)3Cl] by fungi // Environmental Microbiology. – 2014. – V. 17, № 6. – P. 2018-2034. doi: 10.1111/1462-2920.12612
40. Gharieb M.I., Ali M. I., El-Shoura A.A. Transformation of Copper Oxychloride Fungicide into Copper Oxalate by Tolerant Fungi and the Effect of Nitrogen Source on Tolerance // Biodegradation. – 2004. – V. 15, № 1. – P. 49- 57. doi: 10.1023/B:BIOD.0000009962.48723.df
41. Little B., Staehle R., Davis R. Fungal influenced corrosion of post-tensioned cables // International Biodeterioration & Biodegradation. – 2001. – V. 47, № 2. – P. 71-77. doi: 10.1016/s0964-8305(01)00039-7
42. De Leo F., Campanella G., Proverbio E., Urzì C. Laboratory tests of fungal biocorrosion of unbonded lubricated posttensioned tendons // Construction and Building Materials. – 2013. – V. 49. – P. 821-827. doi: 10.1016/j.conbuildmat.2013.08.071
43. Naranjo L., Pernía B., Inojosa Y., Rojas D.A., D’Anna L.S., González M., Sisto Á.D. First Evidence of Fungal Strains Isolated and Identified from Naphtha Storage Tanks and Transporting Pipelines in Venezuelan Oil Facilities // Advances in Microbiology. – 2015. – V. 5. – P. 143-154. doi: 10.4236/AIM.2015.52014
44. Lewandowski Z., Beyenal H. Mechanisms of Microbially Influenced Corrosion. Springer Series on Biofilms / Springer-Verlag Berlin Heidelberg. – 2008. – P. 35-64. doi: 10.1007/978-3-540-69796-1_3
45. Beale D.J., Karpe A.V., Jadhav S., Muster T.H., Palombo E.A. Omics-based approaches and their use in the assessment of microbial-influenced corrosion of metals // Corrosion Reviews. – 2016. – V. 34, № 1-2. – P. 1-15. doi: 10.1515/corrrev-2015-0046
46. Tripathi A.K., Thakur P., Saxena P., Rauniyar S., Gopalakrishnan V., Singh R.N., Gadhamshetty V., Gnimpieba E.Z., Jasthi B.K., Sani R.K. Gene Sets and Mechanisms of Sulfate-Reducing Bacteria Biofilm Formation and Quorum Sensing With Impact on Corrosion // Frontiers in Microbiology. – V. 12. Article number 754140. doi: 10.3389/fmicb.2021.754140
47. Yazdi M., Khan F., Abbassi R., Quddus N., Castaneda-Lopez H. A review of risk-based decision-making models for microbiologically influenced corrosion (MIC) in offshore pipelines // Reliability Engineering & System Safety. – 2022. – V. 223. Article number 108474. doi: 10.1016/j.ress.2022.108474
48. Dang Y.T.H., Power A., Cozzolino D., Dinh K.B., Ha B.S., Kolobaric A., Vongsvivut J., Truong V.K., Chapman J. Analytical Characterisation of Material Corrosion by Biofilms // Journal of Bio- and Tribo-Corrosion. – 2022. – V. 8. Article number 50. doi: 10.1007/ s40735-022-00648-2
49. Tuck B., Watkin E., Somers A., Machuca L.L. A critical review of marine biofilms on metallic materials // npj Materials degradation. – 2022. – V. 6. Article number 25. doi: 10.1038/s41529-022-00234-4
50. Beale D.J., Dunn M.S., Marney D. Application of GC–MS metabolic profiling to “blue-green water” from microbial influenced corrosion in copper pipes // Corrosion Science. – 2010. – V. 52, № 9. – P. 3140-3145. doi: 10.1016/j.corsci.2010.04.039
51. Beale D.J., Dunn M.S., Morrison P.D., Porter N.A., Marlow D.R. Characterisation of bulk water samples from copper pipes undergoing microbially influenced corrosion by diagnostic metabolomic profiling // Corrosion Science. – 2012. – V. 55. – P. 272-279. doi: 10.1016/j.corsci.2011.10.026
52. Beale D.J., Morrison P.D., Key C., Palombo E.A. Metabolic profiling of biofilm bacteria known to cause microbial influenced corrosion // Water Science and Technology. – 2013. – V. 69, № 1.– P. 1-8. doi: 10.2166/wst.2013.425
53.
Review
For citations:
Belov D.V., Belyaev S.N. On the decisive role of biofilms of microorganisms in the initiation and development of microbiological corrosion of metals (part 2). Theory and Practice of Corrosion Protection. 2023;28(1):43-58. (In Russ.) https://doi.org/10.31615/j.corros.prot.2023.107.1-5