Preview

Theory and Practice of Corrosion Protection

Advanced search

Evaluation of the influence of various factors on the corrosion of steels during moisture condensation under the conditions of transportation of a corrosive gas

https://doi.org/10.31615/j.corros.prot.2022.105.3-2

Abstract

The problem of internal corrosion is an urgent problem in the transportation of produced products with the presence of corrosive-aggressive components through gas pipelines. The presence of CO2 or H2S in the produced gas in combination with the presence of condensation water, as well as a number of other factors, stimulates the intensive development of carbon dioxide or hydrogen sulfide corrosion of a local nature. To determine the limiting rates of local corrosion, corrosion tests were performed under conditions of moisture condensation, which occurs when a temperature gradient occurs and the transported gas is rapidly cooled. A study was carried out to assess the influence of the main operational factors on corrosion processes during moisture condensation on the inner surface of the gas pipeline: humidity, temperature, type of steel, the presence of a weld and the presence of alcohol, monoethylene glycol and acidic environments. It has been established that many of the above corrosion parameters accelerate local corrosion of carbon and low alloy steels, the development rate of which reaches up to several mm/year. It has been determined that the rate of development of corrosion processes during the condensation of water-glycol and water-alcohol solutions depends on the amount and composition of the liquid condensing on the metal surface. High-alloy steel 12X18H10T (with 18% Cr) showed resistance to corrosion conditions during moisture con densation

About the Authors

K. A. Ibatullin
LLC Gazprom VNIIGAZ
Russian Federation

Konstantin A. Ibatullin, Ph.D. in Chemistry, Leading
Researcher

15, Proyektiruyemy proyezd №5537, bld. 1, Razvilka, Leninsky municip., Moscow region



R. K. Vagapov
LLC Gazprom VNIIGAZ
Russian Federation

Ruslan K. Vagapov, Ph.D. in Chemistry, Head of Laboratory

15, Proyektiruyemy proyezd №5537, bld. 1, Razvilka, Leninsky municip., Moscow region



References

1. Kantyukov, R. R., Zapevalov, D. N., & Vagapov, R. K. (2021). Analysis of the application and impact of carbon dioxide media on the corrosion state of oil and gas facilities. Journal of Mining Institute, 250(4), 578-586. doi:10.31897/PMI.2021.4.11

2. El-Sherik, A. M. (2017). Trends in Oil and Gas Corrosion Research and Technologies. Production and Transmission. Woodhead Publishing.

3. Alamri, A. H. (2020). Localized corrosion and mitigation approach of steel materials used in oil and gas pipelines – An overview. Engineering Failure Analysis, 116, 104735. https://doi.org/10.1016/j.engfailanal.2020.104735

4. Vagapov, R. K. (2022). Resistance of Steels under Operating Conditions of Gas Fields Containing Aggressive CO2 in the Produced Media. Inorganic Materials: Applied Research, 13(1), 240-245. https://doi.org/10.1134/S2075113322010397

5. Mokshaev, A. N., Sorokin, N. I., & Baryshev S. N. (2018). Providing reliability and operating efficiency of the equipment at the hazardous production facilities of the Orenburg NGKM beyond design lifetime. Gazovaya Promyshlennost’, (3), 39-41.

6. Filippov, A. G., Tokman, A. K., Potapov, A. G., et al. (2010). Operation of Wells of the Astrakhan’ Gas Condensate Field. Moscow: Gazprom Expo LLC.

7. Vagapov, R. К. (2021). Study of hydrogenation and corrosion of steel equipment and pipelines at the production facilities of H2S-containing hydrocarbon raw materials. Voprosy Materialovedeniya, 106(2), 170-181. doi: 10.22349/1994-6716-2021-106-2-170-181

8. Singer, М. (2017). Study of the Localized Nature of Top of the Line Corrosion in sweet environment. Corrosion, 73(8), 1030-1055. https://doi.org/10.5006/2222

9. Vagapov, R. K., Zapevalov, D. N. (2020). Aggressive environmental factors causing corrosion at gas production facilities in the presence of carbon dioxide. Theory and Practice of Corrosion Protection, 25(4), 7-17. doi: 10.31615/j.corros.prot.2020.98.4-1

10. Vagapov, R., Zapevalov, D., & Ibatullin K. (2021). The Evaluation of the Corrosion Resistance of Materials under the Conditions of Moisture Condensation in the Presence of Carbon Dioxide. Inorganic Materials: Applied Research, 12(6), 1606-1614. https://doi.org/10.1134/S2075113321060289

11. Kermani, B., Harrop, D. (2019). Corrosion and Materials in Hydrocarbon Production: A Compendium of Operational and Engineering Aspects. John Wiley & Sons Ltd.

12. Papavinasam, S. (2014). Corrosion Control in the Oil and Gas Industry. Gulf Professional Publishing

13. Pugh, D., Asher, S., & Berchane, N., et al. (2009). Top-of-Line Corrosion Control in Large Diameter Wet Gas Pipelines. International Petroleum Technology Conference, Paper IPTC-13733-MS.

14. Li, H., Yap, K.M., & Srinivasan, S. (2018). Evaluation of Top-of-Line Corrosion Model for Multiphase Oil and Gas Environments. NACE Corrosion conference, Paper 51318-11223.

15. Asher, S. L., Sun, W., & Ojifinni, R. et al. (2012). Top of the Line Corrosion Prediction in Wet Gas Pipelines. NACE Corrosion conference, Paper С-2012-0001303.

16. Rosenfeld, I. L., Zhigalova, K. A. (1966). Accelerated Methods of Corrosion Testing of Metals (Theory and Practice). Moscow: Metallurgiya.

17. Unified system of corrosion and ageing protection. Metals and alloys. Methods for determination of corrosion and corrosion resistance indices. (1985). GOST 9.908-85. Moscow: Standartinform.

18. Kuznetsov, Yu. I., Andreev, N. N., Ibatullin, K. A., & Oleinik, S. V. (2002). Protection of lowcarbon steel from carbon dioxide corrosion with volatile inhibitors. I. Liquid phase. Protection of metals, 38(4), 322-328.

19. Kuznetsov, Yu. I., Andreev, N. N., Ibatullin, K. A., & Oleinik, S. V. (2003). Protection of lowcarbon steel from carbon dioxide corrosion with volatile inhibitors. II. Vapor phase. Protection of metals, 39(1), 19-22.

20. Marsch, J. (2012). Materials Selection For Offshore Pipelines - a European Perspective. NACE Corrosion conference, Paper 51312-01649.

21. Sun, Y. H., Nešić, S. (2004). A. parametric study and modeling on localized CO2 corrosion in horizontal wet gas flow. NACE Corrosion conference, Paper 380.

22. Piccardino, J. R., Stuvik M., Gunaltun Y., & Pornthep T. (2004). Internal Inspection of Wet Gas Lines Subject to Top of the Line Corrosion, NACE Corrosion conference, Paper 04354.

23. Slugin, P. P., Polyansky, A. V. (2018). The optimal method of combating carbon dioxide corrosion of pipelines at the Bovanenkovo oil and gas condensate field. Nauka i tekhnika v gazovoy promyshlennosti, 74(2), 104-109.

24. Koryakin, A. Yu., Kobychev, V. F., Kolinchenko, I. V., & Yusupov, A. D. (2017). Conditions of the carbon dioxide corrosion on the production facilities of achimovskie deposits, methods of monitoring and forecasting. Gazovaya Promyshlennost’, (12), 84-89.

25. Baydin, I. I., Kharitonov, A. N., Velichkin, A. V., Il`in, A. V., & Podolyanskiy, E. S. (2018). Effect of carbonic acid gas presence in natural gas of the gas-condensate Lower-Cretaceous deposit at Yubileynoye oil-gas-condensate field on operation of UKPG-NTS. Nauka i Tekhnika v Gazovoy Promyshlennosti, 74(2), 23-35.

26. Vagapov, R.K., Zapevalov, D.N., & Ibatullin, K.A. (2020). Study of corrosion of gas production infrastructure objects in the presence of CO2 by the methods of analytical control. Industrial laboratory. Diagnostics of materials, 86(10), 23-30. doi: 10.26896/1028-6861-2020-86-10-23-30.

27. Nyborg, R., Dugstad, A. (2007). Top of Line Corrosion and Water Condensation Rates in Wet Gas Pipelines. NACE Corrosion conference, Paper 07555.

28. Gunaltun, Y. M., Larrey, D. (2000). Water-condensation rate critical in predicting, preventing TLC in wet-gas lines. Oil & gas journal, 98(28), 58-63.

29. Kaewpradap, U., Singer, M., Nešić, S., & Punpruk, S. (2012).Top Of The Line Corrosion - Comparison Of Model Predictions With Field Data. NACE Corrosion conference, Paper 1449.

30. Gunaltun, Y. M., Larrey, D., Punpruk, S., & Suryani, S. (2013). Design of Multiphase Offshore Gas Pipelines with High Risk of Sweet Top of the Lines Corrosion. NACE Corrosion conference, Paper 2290.

31. Precoor, D. (2010). A Study Of Methanol Corrosion In Wet Sour Systems, With and Without Inhibition. NACE Northern Area Western Conference, Paper 1-21.

32. Qasim, A., Khan, M. S., Lal, B., & Shariff, A. M. (2019). A perspective on dual purpose gas hydrate and corrosion inhibitors for flow assurance. Journal of Petroleum Science and Engineering, 183, 106418. https:// doi.org/10.1016/j.petrol.2019.106418

33. Vagapov, R. K., Zapevalov, D. N., & Ibatullin, K. A. (2020). Оn patterns of internal corrosion processes and rust protection at marine facilities affected by increased amounts of CO2. Vesti Gazovoy Nauki, (3), 81-92.

34. Vagapov, R. K. (2021). The destruction of steel equipment and pipelines at gas fields due to corrosion processes in the presence of aggressive components. Technology of Metals, (3), 47-54. doi: 10.31044/1684-2499-2021-0-3-47-54

35. Mu, L. J., Zhao, W. Z. (2010). Investigation on carbon dioxide corrosion behaviour of HP13Cr110 stainless steel in simulated stratum water. Corrosion Science, 52(1), 82-89. https://doi.org/10.1016/j.corsci.2009.08.056

36. Pots, B. F. M., Hendriksen, E. L. J. A. (2000). CO2 corrosion under scaling conditions - the special case of top-of-line corrosion in wet gas pipelines. NACE Corrosion conference, Paper 00031.

37. Vagapov, R. K., Mikhalkina, O. G., & Zapevalov, D. N. (2022). Use of X-ray diffraction and chromatomass spectrometry for assessment of corrosion and inhibitor protection at facilities of gas fields. Corrosion: materials, protection, (1), 37-48. doi: 10.31044/1813–7016–2022–0–1–37–48

38. Singer, M., Hinkson, D., Zhang, Z., Wang, H., & Nešić, S. (2013). CO2 Top-of-the- Line Corrosion in Presence of Acetic Acid: A Parametric Study. Corrosion, 69(7), 719-735. https://doi.org/10.5006/0737

39. Svenningsen, G., Nyborg, R., Torri, L., Cheldi, T., & Cavassi, P. (2016). Top of Line Corrosion Testing for a Gas Field with Acetic Acid and Low CO2. NACE Corrosion conference, Paper 51316-7275.

40. Singer, M., Nešić, S., & Gunaltun, Y. M. (2004). Top of the Line Corrosion in Presence of Acetic Acid and Carbon Dioxide. NACE Corrosion conference. Paper 04437.

41. Andersen, T. R., Halvorsen, A. M. K., Valle, A., et al. (2007). The influence of condensation rate and acetic acid concentration on TOL-corrosion in multiphase pipelines. NACE Corrosion conference, Рaper 07312.

42. Nafday, O. A., Nešić, S. (2005). Iron carbonate film formation and CO2 corrosion in the presence of acetic acid. NACE Corrosion conference, Paper 05295.

43. Jia, Z., Li, X., Du, C., et al. (2012). Effect of acetic acid on CO2 corrosion of 3Cr low-alloy steel. Materials Chemistry and Physics, 132, 258-263. doi:10.1016/j.matchemphys.2011.08.034

44. Rozenfeld, I. L., Frolova, L. V., & Brusnikina, V. M. (1987). Investigation of the corrosion and hydrogen absorption of steel and inhibition of these processes in aqueous media containing hydrogen sulfide. Soviet Scientific Reviews, Section B. Chemistry reviews, 8, Amsterdam: OPA Ltd.

45. Pugh, D. V., Asher, S. L., Cai, J., et al. (2009). Top-Of-Line Corrosion Mechanism For Sour Wet Gas Pipelines. NACE Corrosion conference, Рaper 9285.

46. Svenningsen, G., Kvarekvål, J. (2018). Sour Top of Line Corrosion. NACE Corrosion conference, Рaper 10964.

47. Li, C., Sun, W., Ling, S., Pacheco, J. L. (2012). Experimental Study of Top-of-Line Corrosion In Slightly Sour Environments. NACE Corrosion conference, Рaper 1306.

48. Wire. Bend test method. (1993). GOST 1579-93. Moscow: Standartinform.


Review

For citations:


Ibatullin K.A., Vagapov R.K. Evaluation of the influence of various factors on the corrosion of steels during moisture condensation under the conditions of transportation of a corrosive gas. Theory and Practice of Corrosion Protection. 2022;27(3):31-46. (In Russ.) https://doi.org/10.31615/j.corros.prot.2022.105.3-2

Views: 307


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1998-5738 (Print)
ISSN 2658-6797 (Online)