

Evaluation of Thermal Tissue Damage Using an Electrosurgical Instrument with Wear-Resistant Coatings
https://doi.org/10.31615/j.corros.prot.2025.115.1-2
Abstract
Cr-nanodiamond, WC, and Ni-P and Ni-W-P alloys were studied as functional coatings for electrosurgical instruments. Model experiments showed that the use of Ni-P (15.6 at.% P) and Ni-W-P (1.4 at.% W; 12.6 at.% P) coatings resulted in a decrease in the depth of thermal damage compared to an uncoated instrument. It was suggested that the functional properties of the coatings depend on a combination of many factors, including microhardness, roughness, and electrical conductivity; however, the contribution of any given factor requires more detailed study.
About the Authors
A. K. EvseevRussian Federation
Anatoly K. Evseev, Doctor Sci. in Chemistry, Leading Researcher
bld. 1, 3, B. Sukharevskaya square, Moscow, 129090
N. A. Polyakov
Russian Federation
Nikolai A. Polyakov, Cand. Sci. in Chemistry, Head of Laboratory
bld. 4, 31, Leninskiy pr., Moscow, 119071
I. N. Myagkova
Russian Federation
Inna N. Myagkova, Postgraduate
9, Miusskaya square, Moscow, 125047
I. V. Goroncharovskaya
Russian Federation
Irina V. Goroncharovskaya, Cand. Sci. in Chemistry, Senior Researcher
bld. 1, 3, B. Sukharevskaya square, Moscow, 129090
I. I. Kirsanov
Russian Federation
Iliya I. Kirsanov, Cand. Sci. in Medicine, Head of Department
bld. 1, 3, B. Sukharevskaya square, Moscow, 129090
А. B. Drovosekov
Russian Federation
Andrey B. Drovosekov, Cand. Sci. in Chemistry, Senior Researcher
bld. 4, 31, Leninskiy pr., Moscow, 119071
A. A. Kanibolotskiy
Russian Federation
Alexander A. Kanibolotskiy, Cand. Sci. in Medicine, Head of Department
bld. 1, 3, B. Sukharevskaya square, Moscow, 129090
A. A. Saprin
Russian Federation
Artem A. Saprin, Deputy Chief Physician for Medical Affairs
bld. 1, 3, B. Sukharevskaya square, Moscow, 129090
References
1. Massarweh, N. N., Cosgriff, N. & Slakey, D. P. (2006). Electrosurgery: History, Prin0ciples, and Current and Future Uses. Journal of the American College of Surgeons, 202(3), 520-530. https://doi.10.1016/j.jamcollsurg.2005.11.017
2. Palanker, D., Vankov, A. & Jayaraman, P. (2008). On mechanisms of interaction in electrosurgery. New Journal of Physics, 10. Article ID 123022. https://doi.10.1088/1367-2630/10/12/123022
3. Zheng, L., Wan, J., Long, Y., Fu, H., Zheng, J. & Zhou, Z. (2018). Effect of high-frequency electric distributions on the tissue stickning of minimally invasive electrosurgical devices. Royal Society open science, 5(7). Article ID 180125. https://doi.10.1098/rsos.180125
4. Cruz, R. L., Nascimento, C. D., Souza, E. G., Aguzzoli, C., Moraes, A. C. B. K. & Lund, R. G. (2022). On the Adhesion of Protein in Nitrided Metallic Coatings for Electrosurgical Electrodes of Stainless Steel. Materials Research, (25). Article ID e20210547. https://doi.org/10.1557/JMR.1997.0410
5. Myagkova, I. N., Evseev, A. K., Polyakov, N. A., Drovosekov, A. B., Goroncharovskaya, I. V. & Shabanov, A. K. (2022). Physico-chemical approaches to improve the characteristics of electrosurgical instruments. ChemChemTech, 65(10), 6-13. https://doi.10.6060/ivkkt.20226510.6649 (in Russ.)
6. Lo, J. L., Shieu, F. S. & Hung, C. C. (2019). Characterization of textured Cr2O3 layer formed on AISI440A stainless steel via anisotropic elecetropolishing for electrosurgical instruments. Material Research Express, 6. Article 025402. https://doi.10.1088/2053-1591/aaec5e
7. Hsu, Y. L., Lee, C. H., Chiu, S. M., Sung, Y. C., Yang, K. Y. & Chu, C. W. (2010). Anti-sticking Properties of PVD CrWNx, CrOx and ZrOx Coatings on Medical Electrode Application. Defect and Diffusion Forum, 297(301), 656-663. https://doi.10.4028/www.scientific.net/DDF.297-301.656
8. Han, Z., Fu, J., Feng, X., Niu, S., Zhang, J. & Ren, L. (2017). Bionic anti-adhesive electrode coupled with maize leaf microstructures and TiO2 coating. RSC Advances, 7(72), 45287-45293. https://doi.10.1039/C7RA08184G
9. Ou K. L., Chu J. C., Hosseinkhani H., Chiou J. F. & Yu C. H. (2014). Biomedical nanostructured coating for minimally invasive surgery devices applications: characterization, cell cytotoxicity evaluation and an animal study in rat. Surgical Endoscopy, 28(7), 2174-2188. https://doi.10.1007/s00464-014-3450-9
10. Konesky, G. (1998). Porosity Evolution in Electrosurgical Blade Coatings. MRS Online Proceedings Library, 550, 249-254. https://doi.10.1557/PROC-550-249
11. Shen, Y. D., Lin, L. H., Chiang, H. J., Ou, K. L. & Cheng, H. Y. (2016). Research of electrosurgical unit with novel antiadhesion composite thin film for tumor ablation: Microstructural characteristics, thermal conduction properties, and biological behaviors. Journal of biomedical materials research. Part B, Applied biomaterials, 104(1), 96-105. https://doi.10.1002/jbm.b.33363
12. Vinokurov, E. G., Burukhina, T. F., Skopintsev, V. D., Vasiliev, V. V. & Grafushin, R. V. (2023). Review and analysis of developments and studies of tribological characteristics of Ni–P coatings as an alternative to chromium coatings. Galvanotechnics and surface treatment, 31(1), 19-35. https://doi.10.47188/0869-53262023_31_1_19 (in Russ.)
13. Polyakov, N. A. (2016). Formation of chromium composite electrochemical coatings from sulfate oxalate solutions based on Cr(III). Russian Journal of Electrochemistry, 52(9), 858-872. https://doi.10.1134/S1023193516090081
14. Drovosekov, A. B. (2020). Comparison of corrosion-protective properties of chemical-catalytic coatings Ni-P and Ni-W-P. Practice of Anti-Corrosion Protection, 25(2), 66-71. https://doi.10.31615/j.corros.prot.2020.96.2-8 (in Russ.)
15. Dushik, V. V., Ruban, E. A., Shaporenkov, A. A., Drovosekov, A. B., Rozhanskii, N. V. & Gladkikh, N. A. (2022). Mechanical Properties and Corrosion-Electrochemical Behavior of Multilayer Coatings of the Ni-P and W-C System Obtained by the Electroless Plating Method and Chemical Vapor Deposition. Part 1. Structure and Mechanical Properties of Coatings. Protection of Metals and Physical Chemistry of Surfaces, 58(7), 1301-1306. https://doi.10.1134/S207020512207004
16. Dushik, V. V., Ruban, E. A., Drovosekov, A. B., Shaporenkov, A. A. & Rozhanskiy, N. V. (2023). Synergetic Effect in Ni-P-W and W-C Multilayer Coating Systems Obtained by Chemical-Catalytic Metallization and Chemical-Vapor Deposition. Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques, 17, 1367-1371. https://doi.10.1134/S1027451023060265
17. Taylor, K. A. (1977). Ancillary properties of vapor-deposited carbide coatings. Thin Solid Films, 40, 201-209. https://doi.10.1016/0040-6090(77)90119-5
18. Jensen, J. A. D., Møller, P., Bruton, T., Mason, N., Russell, R., Hadley, J., Verhoeven, P., & Matthewson, A. (2003). Electrochemical Deposition of Buried Contacts in High-Efficiency Crystalline Silicon Photovoltaic Cells. Journal of The Electrochemical Society, 150(1), G49-G57. https://doi.10.1149/1.1528943
19. Weil, R., Parker, K. (1990). The Properties of Electroless Nickel/ In: Electroless Plating: Fundamentals and Applications (Eds. Mallory G.O., Hajdu J.B.). NY: William Andrew, 111-137.
20. Palaniappa, M., Seshadri S.K. (2008). Friction and wear behavior of electroless Ni-P and Ni-W-P alloy coatings. Wear, 265, 735740. https://doi.10.1016/j.wear.2008.01.002
Review
For citations:
Evseev A.K., Polyakov N.A., Myagkova I.N., Goroncharovskaya I.V., Kirsanov I.I., Drovosekov А.B., Kanibolotskiy A.A., Saprin A.A. Evaluation of Thermal Tissue Damage Using an Electrosurgical Instrument with Wear-Resistant Coatings. Theory and Practice of Corrosion Protection. 2025;30(1):21-29. (In Russ.) https://doi.org/10.31615/j.corros.prot.2025.115.1-2