

Study of Immersion Tin Plating for the Production of Printed Circuit Boards
https://doi.org/10.31615/j.corros.prot.2025.115.1-4
Abstract
An immersion tin plating solution was developed for depositing the finishing tin coatings onto the surface of the conductive pattern (hereinafter referred to as CPR) of a printed circuit board (hereinafter referred to as PCB). The finishing tin coatings are intended to protect the CPR of a printed circuit board from corrosion in order to ensure good wettability of the surface with solder and to retain the ability to solder and weld for a long time (up to 6 months), and the finishing immersion tin coatings are also intended to ensure coplanarity of the CPR surface. The solution contains (g (ml)/l): Sn2+ – 12; CH3SO3H – 40; C3H5O(СООН)3 – 300; PEG-400 – 170; CS(NH2)2 – 100; Na(H2PO2)∙H2O – 25; Ag+ – 0,025. It allows to deposit tin coatings with the required solderability in two stages (at t = 18…25 °С and τ = 1…2 min; and then at t = 60…70 °С; τ = 12…16 min) that do not deteriorate after being held in a steam atmosphere for 4 hours. As the temperature of the working solution increases, so does the thickness of the tin coating, while the crystal structure becomes larger. Preliminary immersion tinning in a cold solution leads to a refinement of the structure of the subsequent layer deposited in a hot solution. The addition of sodium hypophosphite increases the stability and service life of the solution, and improves the reproducibility of the thickness and structure of the coatings. It was found that in silver-doped tin coatings, whisker formation is not observed after 3 months of aging. The maximum operation concentration of copper ions that accumulate during the immersion exchange is 8 g/L, which is comparable to a foreign analogue.
About the Authors
K. A. OrlovaRussian Federation
Kseniya A. Orlova, postgraduate
9, Miusskaya square, Moscow, 125047
N. S. Grigoryan
Russian Federation
Nelya S. Grigoryan, Cand. Sci. in Chemistry, professor
9, Miusskaya square, Moscow, 125047
N. A. Asnis
Russian Federation
Naum A. Asnis, Cand. of Technical Sciences, Leading Researcher
9, Miusskaya square, Moscow, 125047
T. A. Vagramyan
Russian Federation
Tigran A. Vagramyan, Doctor of Technical Sciences, Head of department
9, Miusskaya square, Moscow, 125047
A. A. Abrashov
Russian Federation
Aleksey A. Abrashov, Cand. of Technical Sciences, associate professor
9, Miusskaya square, Moscow, 125047
References
1. Danilova, Е. А., Nelyutskov, М. А. & Tuzova, D. Е. (2022). Research on finishing protective coatings for printed circuit boards. Engineering and Technology, 7(2), 1-9. https://doi.10.21685/2587-7704-2022-7-2-4 (in Russ.)
2. Directive 2011/65/EU of the European Parliament and of the Council of 8 June 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment.
3. Zotkin, V. V., Zaitsev, A. G., Gavrilin, G. O., Arkhipov, E. A. & Smirnov, K. N. (2015). Study of Electroless Nickel Plating Process as a Stage in ENIG Process. Galvanotekhnika i obrabotka poverkhnosti, 23(1), 47-50. (in Russ.)
4. Astahov, N. V., Bashkirov, A. V., Makarov, O. Yu., Pirogov, A. A. & Demihova, A. S. (2021). Problems of improving the reliability and quality of radio electronic products and instruments when using lead-free solders. Vestnik Voronezhskogo gosudarstvennogo tekhnicheskogo universiteta, 17(2), 48-53. (in Russ.)
5. Orlova, K. A., Grigoryan, N. S. & Asnis, N. A. (2023). The influence of the structure of copper foil dielectric on the thickness of immersion tin coating. Materialy I Vserossiyskoy nauchnoy konferentsii s mezhdunarodnym uchastiyem. Kazan, 68-69. (in Russ.)
6. Bondar’, A. A., Dem’yanov, B. F. (2020). Morphology of phases at the solid copper/liquid tin interface. Materialy XVII Vserossiyskoy nauchno-tekhnicheskoy konferentsii studentov, aspirantov i molodyh uchenyh. Barnaul, 48-50. (in Russ.)
7. Bondar’, A. A., Ageykova, L. N. & Dem’yanov, B. F. (2019). Growth of intermetallic compounds and formation of a transition layer in the contact zone of copper with liquid tin. Polzunovskiy vestnik, (2), 133-137. (in Russ.)
8. Wessling, B., Rischka, M. & Posdorfer, J. (2010). OrmeSTAR Ultra – the organic metal nanofinish. Circuit World, 36(1), 14-21. https://doi.10.1108/03056121011015059
9. GOST 28211-89 (1990). Basic environmental testing procedures. Part 2. Tests. Test T: Soldering. Moscow: Izdatelstvo standartov. (in Russ.)
10. Martell, A. E., Smith, R.M. (1974-1989). Critical Stability Constants (Vols. 1-6). New York: Plenum Press.
11. Kotik, F. I. (1978). Accelerated control of electrolytes, solutions and melts. Мoscow: Mashinostroenie. (in Russ.)
12. JP Patent No 2000309876A.
13. Arazna, A., Koziol, G., Krolikowski, A. & Bielinski, J. (2013). The corrosion characteristics and solderability of immersion tin coatings on copper. Materials and Corrosion, 64(10), 914-925. https://doi.10.1016/j.surfcoat.2007.06.004
14. Brusnitsyna, L. А. (2017). Electrochemical metallization of printed circuit boards: textbook for students studying under the bachelor’s degree program in the following areas: 18.03.01 Chemical technology; 18.03.02 Energy and resource-saving processes in chemical engineering, petrochemistry and biotechnology. Ekaterinburg: Izdatelstvo FGАОU VPО UrFU. (in Russ.)
15. Muhd Amli, S. F., Mohd Salleh, M. A. A., Ramli, M. I. I., Abdul Aziz, M. S., Yasuda, H., Chaiprapa, J. & Nogita, K. (2022). Effects of immersion silver (ImAg) and immersion tin (ImSn) surface finish on the microstructure and joint strength of Sn-3.0Ag-0.5Cu solder. J Mater Sci: Mater Electron, 33, 14249-14263. https://doi.10.1007/s10854-022-08353-z
16. Wessling B. (1999). Use of Organic Metal to enhance the operating window and solderability of immersion tin. Circuit World, 25(4), 8-16. https://doi.10.1108/03056129910290733
17. Medvedev, A. M. (2012). Finish coatings for soldering. Galvanotekhnika i obrabotka poverkhnosti, (4), 47-57. (in Russ.)
18. Huttunen-Saarivirta, E. (2002). Observations on the uniformity of immersion tin coatings on copper. Surface and Coatings Technology, 160, 288-294. https://doi.10.1016/S0257-8972(02)00412-7
19. Kovac, Z., Tu, K. N. (1984). Immersion tin: Its chemistry, metallurgy and application in electronic packaging technology. Res. Develop, 28(6), 726-734. https://doi.10.1147/RD.286.0726
20. Huang, Y., Yang, Ch., Tan, X., Zhang, Zh., Wang, Sh., Hu, J., He, W., Du, Zh., Du Y., Tang, Y., Su, X. & Chen, Y. (2022). Benzaldehyde derivatives on tin electroplating as corrosion resistance for fabricating copper circuit. Nanotechnology Reviews, 11(1), 3125-3137. https://doi.10.1515/ntrev-2022-0497
21. Orlova, K. A., Grigoryan, N. S., Asnis, N. A., Smirnov, K. N., Abrashov, A. A., Vagramyan, T. A. & Zhirukhin, D. A. (2023). Study of immersion tin plating for the production of printed circuit boards. International Journal of Corrosion and Scale Inhibition, 12(4), 17191732. https://doi.10.17675/2305-6894-2023-12-4-17 (in Russ.)
22. Fadil, N. A., Yusof, S. Z., Abu Bakar, T. A., Ghazali, H., Mat Yajid M.A., Osman ,S.A. & Ourdjini, A. (2021). Tin Whiskers’ Behavior under Stress Load and the Mitigation Method for Immersion Tin Surface Finish. Materials, 14, 6817-6832. https://doi10.3390/ma14226817
23. Smertina, T. (2007). Immersion tin as a finishing coating. Tekhnologii v elektronnoy promyshlennosti, (4), 16-19. (in Russ.)
24. Delhaise, A. M., Bagheri, Z., Meschter, S., Snugovsky, P. & Kennedy, J. (2020). Tin Whisker Growth on Electronic Assemblies Soldered with Bi-Containing, Pb-Free Alloys. Journal of Electronic Materials, 50(3), 842-854. https://doi.10.1007/s11664-020-08544-6
Review
For citations:
Orlova K.A., Grigoryan N.S., Asnis N.A., Vagramyan T.A., Abrashov A.A. Study of Immersion Tin Plating for the Production of Printed Circuit Boards. Theory and Practice of Corrosion Protection. 2025;30(1):39-48. (In Russ.) https://doi.org/10.31615/j.corros.prot.2025.115.1-4