Preview

Theory and Practice of Corrosion Protection

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Analysis of World Experience in the Use of Sacrificial and Sacrificial-diode Systems for the Protection of Oilfield Equipment from Corrosion under the Influence of Stray Currents

https://doi.org/10.31615/j.corros.prot.2025.118.4-5

Abstract

This review analyzes the application of sacrificial anode cathodic protection and sacrificial anode diode-assisted cathodic protection systems for oilfield equipment under stray current conditions. It examines theoretical foundations, sources of stray currents, advantages and disadvantages of sacrificial anode diodeassisted systems, practical examples, and alternative protection methods.

About the Authors

O. R. Latypov
Ufa State Petroleum Technological University
Россия

Oleg R. Latypov, Doctor of Technical Sciences, Professor, Head of the Department of Materials Science and Corrosion Protection

1, Kosmonavtov st., Ufa, 450064



A. S. Kvyatkovskaya
Ufa University of Science and Technology
Россия

Adel S. Kvyatkovskaya, Cand. of Technical Sciences, associate professor, Head of the Department of Green Chemistry and Resource-saving Technologies

32, Zaki Validi st., Ufa, 450076



Y. B. Saburova
Ufa University of Science and Technology
Россия

Yulia B. Saburova, Cand. of Technical Sciences, associate professor

32, Zaki Validi st., Ufa, 450076



A. R. Khamzina
Ufa University of Science and Technology
Россия

Albina R. Khamzina, Cand. of Technical Sciences, associate professor

32, Zaki Validi st., Ufa, 450076



A. R. Khasanov
Ufa University of Science and Technology
Россия

Azat R. Khasanov, postgraduate student

32, Zaki Validi st., Ufa, 450076



A. R. Mavzyutov
Ufa State Petroleum Technological University
Россия

Askar R. Mavzyutov, postgraduate student

1, Kosmonavtov st., Ufa, 450064



References

1. Roberge, P. R. (2018). Handbook of corrosion engineering. McGraw-Hill Education.

2. Koch, G. H., Brongers, M. P. H., Thompson, N. G., Virmani, Y. P., & Payer, J. H. (2011). Corrosion costs and preventive strategies in the United States. Federal Highway Administration, FHWA-RD-01-156.

3. Revie, R. W., Uhlig, H. H. (2008). Corrosion and corrosion control: an introduction to corrosion science and engineering. John Wiley & Sons.

4. Jones, D. A. (2012). Principles and prevention of corrosion. Pearson.

5. Fontana, M. G. (1986). Corrosion engineering. McGraw-Hill.

6. ASM Handbook Committee. (2003). ASM handbook, volume 13A: Corrosion: Fundamentals, testing, and protection. ASM International.

7. Appel, L. (2003). Stray current-induced corrosion: a major threat to pipeline integrity. Materials Performance, 42(10), 34-38.

8. Bard, A. J., & Faulkner, L. R. (2001). Electrochemical methods: fundamentals and applications. John Wiley & Sons.

9. Schweitzer, P. A. (2007). Corrosion and corrosion protection handbook. CRC press.

10. Talbot, D., & Talbot, J. (1998). Corrosion science and technology. CRC Press.

11. Roberge, P. R. (2000). Cathodic protection. Citeseer.

12. Morgan, J. H. (1987). Cathodic protection. National Association of Corrosion Engineers.

13. Ahmad, Z. (2006). Principles of corrosion engineering and corrosion control. Butterworth-Heinemann.

14. Baeckmann, W. V., Schwenk, W., & Prinz, W. (1997). Cathodic protection handbook. John Wiley & Sons.

15. Pe Peabody, A. W. (2001). Peabody's control of pipeline corrosion. National Association of Corrosion Engineers.

16. Gummow, R. A. (2011). The effect of soil resistivity on cathodic protection design. Materials Performance, 50(1), 46-51.

17. Thompson, N. G., Brongers, M. P. H., Koch, G. H., Virmani, Y. P., & Payer, J. H. (2000). Sacrificial anode cathodic protection systems. FHWA-RD-99-163.

18. Davis, J. R. (Ed.). (1995). Corrosion of materials. ASM International.

19. Scully, J. R. (2017). Electrochemical impedance spectroscopy. Electrochemical techniques in corrosion engineering, 149-196.

20. Shreir, L. L., Jarman, R. A., & Cottis, R. A. (1994). Corrosion. Butterworth-Heinemann.

21. DNV. (2017). DNVGL-RP-F103 Cathodic Protection of Submarine Pipelines by Galvanic Anodes. DNV GL.

22. Thompson, N. G., Koch, G. H., Brongers, M. P. H., Virmani, Y. P., & Payer, J. H. (2002). Stray current corrosion. FHWARD-01-157.

23. Revie, R. W. (2015). Stray current corrosion. In Corrosion and Corrosion Control (pp. 345-364). John Wiley & Sons, Inc.

24. NACE Standard RP0169-2013. Control of External Corrosion on Underground or Submerged Metallic Piping Systems. NACE International.

25. Zhou, W., Li, W., & Zhang, J. (2020). AC corrosion of pipeline steel under high voltage AC transmission lines: A review. Corrosion Science, 175, 108844.

26. Zhou, W., Zhang, J., & Li, W. (2021). Mechanism of AC corrosion of pipeline steel in near-neutral pH soil electrolyte. Journal of Materials Science & Technology, 70, 272-284.

27. BS 7361-1:1991. Cathodic protection. Part 1. Code of practice for land applications. British Standards Institution.

28. Roberge, P. R. (2018). Corrosion Engineering: Principles and Solved Problems. Elsevier.

29. Sammour, H. M. (2016). Cathodic protection against corrosion. Petroleum & Coal, 58(1), 1-18.

30. Melchers, R. E. (2018). Corrosion reliability and risk analysis. ButterworthHeinemann.

31. Frankel, G. S. (1998). Pitting corrosion of metals: a review of recent advances in understanding mechanism and assessing damage. Journal of the Electrochemical Society, 145(6), 2186-2198.

32. Thompson, N. G., Koch, G. H., Brongers, M. P. H., Virmani, Y. P., & Payer, J. H. (2001). Economic effects of stray current corrosion. Materials Performance, 40(10), 40-44.

33. Beavers, J. A., Thompson, N. G. (2006). External corrosion of oil and natural gas pipelines. Materials Performance, 45(8), 32-38.

34. Ahmad, Z., Al-Ajmi, F. F., & Al-Anezi, K. A. (2016). Stray current corrosion of pipelines in soil. Journal of Materials Engineering and Performance, 25(11), 4943-4951.

35. Smith, K. J., Fink, J. K. (2011). Petroleum engineer's guide to oilfield chemicals and fluids. Gulf Professional Publishing.

36. API Recommended Practice 651. Cathodic Protection of Aboveground Petroleum Storage Tanks. American Petroleum Institute.

37. Flemmer, R. L. C., Ting, V. C. (2017). Riskbased management of corrosion in upstream oil and gas industry. Journal of Loss Prevention in the Process Industries, 49, 208-218.

38. Bennett, L. H., Thompson, N. G. (2004). Cost-effective corrosion management in the oil and gas industry. Materials Performance, 43(10), 34-39.

39. Muhlbauer, W. K. (2004). Pipeline risk management manual: ideas, techniques, and resources. Gulf Professional Publishing.

40. Szklarz, J., Pawlowski, A. (2010). Diodeassisted cathodic protection of underground pipelines. Anti-Corrosion Methods and Materials, 57(6), 299-303.

41. Pawlowski, A., Szklarz, J. (2012). Sacrificial anode cathodic protection with diodes for pipelines under stray current influence. Corrosion Engineering, Science and Technology, 47(2), 144-148.

42. El-Shamy, A. M., El-Gendy, A. A. (2015). Performance of diode-assisted cathodic protection system for pipelines subjected to stray current interference. Journal of Applied Electrochemistry, 45(11), 1161-1171.

43. Szklarz, J., Pawlowski, A. (2013). Circuit arrangements for diode-assisted cathodic protection of pipelines. Materials and Corrosion, 64(11), 983-989.

44. Horowitz, P., Hill, W. (2015). The art of electronics. Cambridge university press.

45. Morgan, J. H. (2008). Sacrificial anodes and impressed current systems. In Cathodic Protection (pp. 125-154). John Wiley & Sons, Ltd.

46. Song, F., Liu, H., & Li, X. (2017). Application of diode-assisted cathodic protection in mitigating stray current corrosion of pipelines. Engineering Failure Analysis, 80, 404-413.

47. Song, F., Liu, H., & Li, X. (2019). Numerical simulation and experimental validation of diode-assisted cathodic protection for pipelines under stray current interference. Corrosion Science, 159, 108145.

48. Davis, J. R., Gedge, G. (2019). Cathodic protection system design. In Corrosion Basics (pp. 357-378). ASM International.

49. Szklarz, J., Pawlowski, A. (2015). Current distribution in diode-assisted cathodic protection of pipelines. Electrochimica Acta, 176, 1342-1349.

50. El-Gendy, A. A., El-Shamy, A. M. (2017). Life cycle assessment of diodeassisted cathodic protection system for buried pipelines. Journal of Cleaner Production, 142, 3538-3548.

51. Davis, J. R., Gedge, G. (2019). Sacrificial Anode Cathodic Protection. In Corrosion Basics (pp. 379-402). ASM International.

52. Pawlowski, A., Szklarz, J. (2014). Control and monitoring of diode-assisted cathodic protection systems. Materials and Corrosion, 65(12), 1145-1150.

53. El-Shamy, A. M., El-Gendy, A. A. (2016). Economic evaluation of diode-assisted cathodic protection system for pipelines. International Journal of Electrochemical Science, 11(1), 486-501.

54. NACE SP0169-2013. Control of External Corrosion on Underground or Submerged Metallic Piping Systems. NACE International.

55. Revie, R. W. (2015). Cathodic protection design. In Corrosion and Corrosion Control (pp. 399-434). John Wiley & Sons, Inc.

56. Roberge, P. R. (2018). Cathodic protection design calculations. In Handbook of corrosion engineering (pp. 803-834). McGrawHill Education.

57. Fontana, M. G., Greene, N. D. (1978). Corrosion engineering. McGraw-Hill.

58. Morgan, J. H. (2008). System monitoring and maintenance. In Cathodic Protection (pp. 205-224). John Wiley & Sons, Ltd.

59. ASM International Handbook Committee. (1987). ASM handbook, volume 13: Corrosion. ASM International.

60. Uhlig, H. H., Revie, R. W. (1985). Corrosion and corrosion control. Wiley.

61. Appelo, C. A. J., Postma, D. (2005). Geochemistry, groundwater and pollution. CRC press.

62. Jones, D. A. (1996). Cathodic protection. In Corrosion and wear handbook (pp. 155-178). McGraw-Hill.

63. El-Shamy, A. M., El-Gendy, A. A. (2015). Experimental validation of diodeassisted cathodic protection for pipelines under stray current. Egyptian Journal of Petroleum, 24(4), 491-497.

64. ASTM G16-95 (Reapproved 2017). Standard Guide for Applying Statistics to Analysis of Corrosion Data. ASTM International.

65. Smart, N. S. (2017). Pipeline integrity management. Gulf Professional Publishing.

66. Kroon, D. B., Depalma, T. (2018). Pipeline corrosion and cathodic protection: a practical guide for field personnel. PennWell Books.

67. Jones, D. A. (2012). Case histories in corrosion prevention and control. In Principles and prevention of corrosion (pp. 675-702). Pearson.

68. Smith, K. J., Guild, G. J. (2000). Well completion and servicing. Gulf Professional Publishing.

69. Morgan, J. H. (2017). Case studies in cathodic protection. In Cathodic Protection (pp. 225-248). John Wiley & Sons, Ltd.

70. Thompson, N. G., Bennett, L. H. (2005). Economic justification for cathodic protection. Materials Performance, 44(10), 42-46.

71. Peabody, A. W. (2001). Economics of cathodic protection. In Peabody's control of pipeline corrosion (pp. 1-12). National Association of Corrosion Engineers.

72. Szklarz, J., Pawlowski, A. (2017). Comparative study of traditional and diode-assisted cathodic protection for pipelines under stray current. Materials and Corrosion, 68(1), 45-51.

73. Davis, J. R., Gedge, G. (2019). Comparison of cathodic protection methods. In Corrosion Basics (pp. 403-424). ASM International.

74. Schweitzer, P. A. (2007). Electrochemical methods of corrosion protection. In Corrosion and corrosion protection handbook (pp. 565-600). CRC press.

75. Uhlig, H. H. (1971). Cathodic protection with impressed current. Corrosion and Corrosion Control, 269-293.

76. Kumar, P., Singh, P. M., & Singh, I. B. (2015). An overview of anode materials for impressed current cathodic protection. Journal of Materials Science and Chemical Engineering, 3(10), 1-11.

77. Smart, N. S. (2017). Cathodic protection monitoring and control. In Pipeline integrity management (pp. 285-308). Gulf Professional Publishing.

78. Revie, R. W. (2015). Impressed current cathodic protection. In Corrosion and Corrosion Control (pp. 435-466). John Wiley & Sons, Inc.

79. Foley, R. T. (1986). Passivation. Corrosion, 42(5), 277-288.

80. Frankel, G. S. (2019). Passivity of metals. Journal of The Electrochemical Society, 166(12), C459-C474.

81. Bardwell, J. A., MacLeod, I. D. (2001). Anodic protection: principles and practice. Materials and Corrosion, 52(1), 1-10.

82. Mullayanov, A. R., Ignatiev, K. S., Satayev, A. A. & Nasibullina, O. A. (2025). Development of a durable material for an anode grounding conductor. Oil and Gas Business, 23(2), 106-115. https://doi.10.17122/ngdelo-2025-2-106-115 (in Russ.)

83. ASTM G3-14 (Reapproved 2019). Standard Practice for Conventions Applicable to Electrochemical Measurements in Corrosion Testing. ASTM International.

84. Melchers, R. E. (2020). Smart corrosion management for infrastructure. Structure and Infrastructure Engineering, 16(1), 1-14.

85. Zhang, Y., Mahadevan, S. (2021). Machine learning for corrosion prediction and control: A review. Engineering Applications of Artificial Intelligence, 106, 104474.

86. Mullajanov, A. R. Latypov, O. R., Ignatiev, K. S. (2023). Diversion of Stray Currents to Prevent Overprotected State of Pipeline. Science and Technologies of Oil and Oil Products Pipeline Transportation, 13(4), 328-336. (in Russ.)

87. Mullajanov, A. R. (2023). Diversion of Stray Currents to Sacrificial Anode to Prevent Overprotected State of Pipeline. Oil and Gas 2023: Abstracts of the 77th International Youth Scientific Conference, Moscow, September 11-15, 2023. – Moscow: Gubkin Russian State University of Oil and Gas (National Research University), 504-505. (in Russ.)


Review

For citations:


Latypov O.R., Kvyatkovskaya A.S., Saburova Y.B., Khamzina A.R., Khasanov A.R., Mavzyutov A.R. Analysis of World Experience in the Use of Sacrificial and Sacrificial-diode Systems for the Protection of Oilfield Equipment from Corrosion under the Influence of Stray Currents. Theory and Practice of Corrosion Protection. 2025;30(4):43-56. (In Russ.) https://doi.org/10.31615/j.corros.prot.2025.118.4-5

Views: 35

JATS XML

ISSN 1998-5738 (Print)
ISSN 2658-6797 (Online)